Construction process model

Generic present-state systematisation by IDEF$_0$

Vesa Karhu, Matti Keitelä & Pertti Lahdenperä
VTT Building Technology
ABSTRACT

There is a need for improved co-ordination and performance of the building process. Means to analyse, plan and manage the building process have to be developed. The construction process involves many parties and, thus, special focus should be on the interrelated tasks of the numerous parties, i.e. communication and interfaces. Presently, the parties’ processes are usually considered separate each discipline having its own tasks and limits. Also, concepts and their interpretation vary according to the party and, in general, the used unsystematic and mainly verbal examination is not unambiguous even from the viewpoint of a single party.

Thus, this study has modelled the overall construction process systematically creating a generic state-of-the-art model that covers the design and construction of a building project from the conception of the project in a client's mind to its completion for handover and use. The main focus has been on the functions and flows of the process since it was found that such aspects might be the most critical in the development of the building procedures.

Correspondingly, the IDEF$_0$ method was employed. In this method, activities are described by boxes while arrows connect the boxes and represent interfaces or interconnections between the boxes. The method also distinguishes the various flow-types as control, input and mechanism on the one hand, and output on the other hand. Natural language is combined with graphic presentation.

The resulting process model covers the activities done by the client, various design professionals and the general contractor. The model includes more than 300 activities and considerably more flows. Definitions are also offered for flows whenever the contents may be open to interpretation and, moreover, an English-Finnish glossary is built for all flows and activities included.

Naturally, the model has also been reviewed and the needed further development and utilisation is suggested in the report. The reference model can be subjected to various view-dependent examinations and functions as a platform for more specific models — it is not intended to be taken as the definitive solution. The model supports communication and helps in attaining a common understanding of process related issues. Generally, the modelling approach also supports process re-engineering and improvement efforts as well as new means of building process management, especially when combined with modern computer-aided applications.
FOREWORD

In 1994, the Technical Research Centre of Finland (VTT) launched the three-year STAR research programme which was implemented by VTT Building Technology with assistance from VTT Automation. The acronym STAR stands for Finnish words that could be translated as “Systems Engineering in Construction”.

The programme consists of four research project entities: “Construction process models”, “Customer-oriented design”, “Design for construction” and “Integrated information management”. The common aim is to develop a theoretical foundation, systematic methodology, tools and knowledge for continuous improvement of the construction process.

The work reported here is part of the “Construction process models” project. The entire project had as its aim to develop:

- conceptual metamodels of the construction process
- computerised modelling and browsing tools
- reference models on practical construction processes, and
- means to accelerate and improve construction processes of which the last two were supported by
- a detailed pilot project data capture.

This report named “Construction process model. Generic present-state systematisation by IDEF” is the main deliverable responding to the challenge to reference models.

The work systematises the prevailing industrial practise by describing the numerous activities and flows that belong to the construction process. Mr. Vesa Karhu developed the design process submodels and the client’s work process submodel (sections A - E / Part II). Mr. Matti Keitilä developed the production process submodel (section F / Part II). Dr. Pertti Lahdenperä has participated to the work as a project manager and is the author of Part I of this report. All authors work for VTT Building Technology.

Many others have also commented and added important information to the models. They include Messrs Markku Jokela (Insinööritoimisto Granlund Oy), Matti Kärnä (SRV-Viitoset Oy), Juha Sarakorpi (Tavoitesuunnittelu Oy), Markku Kiviniemi (VTT Building Technology) and Matti Hannus (VTT Building Technology, STAR programme manager). Mr. Jorma Tiainen has checked the language of this report.

The authors thank all named persons and parties as well as other VTT colleagues and contributors for their support and constructive comments.

Tampere, December 1996

Pertti Lahdenperä
CONTENTS

ABSTRACT ... 3
FOREWORD ... 4
CONTENTS ... 5

PART I:

IMPLEMENTATION-RELATED CONCERNS IN
PROCESS MODELLING .. 7

1 INTRODUCTION ... 9
 1.1 Background .. 9
 1.2 Objective and scope ... 9
 1.3 Implementation .. 10

2 CONSTRUCTION PROCESS REVIEW .. 11
 2.1 Problems of the process ... 11
 2.2 Challenge of development .. 11
 2.3 Alternative processes ... 12
 2.4 Defining the critical issues .. 12

3 MODELLING CONVENTIONS .. 14
 3.1 Outlining the research approach ... 14
 3.2 Introduction of the ‘IDEF0’ semantics ... 14
 3.3 Related research and its relevancy .. 15

4 CONSTRUCTION PROCESS MODEL ... 18
 4.1 Starting point ... 18
 4.2 Compilation of the model .. 18
 4.3 Structure and coverage of the model ... 19
 4.4 Reading the model ... 22

5 RESTRICTIONS AND FURTHER DEVELOPMENT ... 25
 5.1 Review of the model structure .. 25
 5.2 Towards improved model validity ... 26
 5.3 Towards an improved modelling approach .. 27

6 UTILISATION OF THE MODEL .. 30
 6.1 Generic modelling incentives .. 30
 6.2 Specified novel applications ... 30

7 CONCLUSIONS ... 33
REFERENCES .. 35
PART II:

THE COMPLETE CONSTRUCTION PROCESS MODEL........ 39

SECTION A: CLIENT'S WORK PROCESS MODEL................................. 41
SECTION B: ARCHITECTURAL DESIGN PROCESS MODEL..................... 59
SECTION C: STRUCTURAL DESIGN PROCESS MODEL......................... 81
SECTION D: BUILDING SERVICES DESIGN PROCESS MODEL................. 99
SECTION E: GEOTECHNICAL DESIGN PROCESS MODEL..................... 117
SECTION F: PRODUCTION PROCESS MODEL..................................... 129
PART I:

IMPLEMENTATION-RELATED CONCERNS IN PROCESS MODELLING
1 INTRODUCTION

1.1 BACKGROUND

The construction process consists of many stages and is a joint effort of many parties. The large number of participating companies is the result of the wide range of expertise needed. In addition, construction is generally implemented in the form of one-off projects, which makes it difficult to co-ordinate the process for successful completion. The situation is further complicated by the fact that the various stages and tasks of building are highly interdependent which creates a vicious circle. Any disturbances are widely reflected on the activities of other parties causing compound effects.

These problems have resulted in high costs of construction and buildings as well as in end-product quality that does not match the client's needs. As a result of the observed problems on the one hand, and the compulsive strive for competitiveness on the other, each of the parties to the building process has developed the process, but only for his part, while none of the parties has been interested in the comprehensive development of the building process.

Due to the need for improved co-ordination of the interrelated tasks of numerous parties to the process, the means to focus on communication and interfaces and to manage the overall building process level have to be developed. All in all, it is perfectly clear that long-term, determined development and control of the building process requires common and systematic concepts and interpretation of the various tasks of building processes as well as their goals and interdependencies and efficient tools for their analysis and organisation.

1.2 OBJECTIVE AND SCOPE

Generally, the challenge is to understand, develop and evaluate alternate implementation solutions for the construction project and, moreover, to plan and manage various more efficient project- and company-specific processes. This requires that many kinds of capabilities and tools as well as reference models are developed. It is also a challenge to the larger R&D entity of which this specific project is a part.

While the new processes, evaluation and management methods and tools, etc. are to be developed in other parts of the overall research entity, this study focuses on what takes place in the building process. In other words:

- the aim in the long-term is to compile systematic and generic reference descriptions of the overall construction process covering the design and construction of a building project from the need survey and briefing to completion for handover and use.
Since this goal is quite far-reaching:

- the objective of this study is to work out a present-state model with the above-defined scope. This means systematising and integrating the prevailing understanding on the building process, establishing a foundation for more specific modelling and redevelopment efforts as suggested above.

1.3 IMPLEMENTATION

The main focus in modelling has been on activities and their interconnections and the information flows between them. Therefore, the IDEF$_0$ method was employed since it is most often used for that purpose. In this method activities are represented by boxes which are connected by arrows representing interfaces or interconnections between the boxes. Natural language, verbs and nouns, is used to define the contents of each activity and flow.

The most important sources have been the client’s and designers’ task lists and the general contractors’ quality management system model which have been found to provide the best description of the prevailing industrial practise. The main division of the overall model follows that of the source documents so that each of the latter corresponds to one party-based section in the model. In addition, an effort has been made to integrate them. The completed IDEF$_0$ model is presented in Part II of this report.

Part I presents the motive underlying the model and defines modelling as an appropriate strategy for construction process development. It also presents some fundamentals needed to understand the context and syntax of the construction process model. Part I also reviews the model and the need for its further development and its utilisation.
2 CONSTRUCTION PROCESS REVIEW

2.1 PROBLEMS OF THE PROCESS

The construction process involves designing and implementing a building project from the conception of the project in a client's mind to its completion for commissioning and use (CIB W65 1985). The process consists of many stages and is a joint effort of many parties. The large number of participating companies is the result of the wide range of expertise needed. The various parties are experts in their field and are essentially less knowledgeable about other fields. As this applies to all parties, it is natural that problems arise at interfaces. Problems and differences of opinion are more the rule than an exception.

Moreover, construction is generally implemented in the form of one-off projects, while both the buildings and the project organisations are unique. This places major additional demands on project co-ordination as the parties used to different operating procedures work together quite intuitively and randomly.

The situation is further complicated by the fact that the various stages and tasks of building are highly interdependent which creates a vicious circle. Thus, any disturbances are widely reflected on the activities of other parties which causes compound effects. Due to the synchronisation problems created by rigid professional divisions of labour and the one-time nature of construction projects, such disturbances are quite likely, which causes idling in the process and lower productivity of construction in general.

2.2 CHALLENGE OF DEVELOPMENT

Due to the need for improved co-ordination of the interrelated tasks of numerous parties to the process, the means to focus on communication and interfaces and to manage the overall building process level have to be developed. Especially, since most of the development work done so far focuses on just parts of the process and is made for and from the viewpoint of individual parties.

Moreover, the problems associated with traditional modes of operation have also been recognised, which along with increasing competition, is forcing companies to develop new products and forms of service. These developments will increase the multiplicity of construction processes. The consequence will be delivery entities and responsibilities that vary from one project to another, and thus, management of building procurement and the integration of different parties will become even more important. We will not know which of the many interrelations will form the interfaces between the parties, and therefore we should know the entire process to a certain degree.

Similar conclusions were also drawn, for instance, by Ndekugri and McCaffer (1988) who said that total integration is a gargantuan task that requires concerted effort at an industry-wide level and even with the industry’s best efforts it can be
achieved only in stages and over a long period. They also point out that these features of the task demand the use of a structured analysis, design and development methodology. It is not enough simply to mimic currently practised procedures.

Chung (1989), again, remarks that due to the fragmented nature of the industry, the co-ordination among project members is ineffective and results in the loss and duplication of information. He continues that there is an evident need for the definition of the information flow required to support the building construction process, and for the clarification of tasks and responsibilities in information generation and transfer among the project participants.

As if the presented need for a systematic approach to tasks, responsibilities and data transfer were not enough, it also seems to us that in the future greater emphasis on individuality and technical systems requiring different kinds of specialisation will lead to increasingly demanding projects. The resulting increased number of involved parties and the significant interdependence of the work stages that they perform will further complicate the process. The transfer towards computer-integrated construction also presupposes the systematisation of operations.

2.3 ALTERNATIVE PROCESSES

The construction process is a multifaceted mess of many concepts. In fact, there are many possible implementation strategies for a project, not just one, although such simplification is usually needed to be able to deal with the subject. Mohsini (1984), for instance, has criticised the general simplified interpretation of the process since there are actually numerous different processes and it is critical to understand the details of each when identifying and then changing those particular determinants of the organisation which may be dysfunctional.

Mohsini illustrates a related problem by presenting an analysis where, at first, the main determinants of project-organisation forms were identified as well as their various alternatives. Although the study was restricted to the main alternatives, and the irrelevant combinations were excluded, 185 alternate building processes were generated. Therefore, it would be of primary interest to form a viewpoint from which all construction processes, or at least as many as possible, are alike because it is not possible or even purposeful to study them all separately.

On the other hand, it should be accepted that hardly any model can — especially in its early stages — describe all the variations perfectly. Genericness and practical utilisability are quite often, at least partially, exclusive properties.

2.4 DEFINING THE CRITICAL ISSUES

As regards the building process, Bakens (1997) states that it involves all activities, tasks and roles of its participants, starting with the first initiative for realising a
building, encompassing programming, design and construction of the building and ending with maintenance. The phases correspond to the definition we used earlier (sec. 2.1). What is relevant is the emphasis on activities, tasks and roles of this latter definition, since most of the variations are results of the different roles the parties have in each alternative process.

In other words, there are many alternative procurement and delivery systems and other modes of operation which define the responsibilities and, moreover, the contents and chronological order of and constraints on various tasks in the building process. For instance, the contract for implementation may be signed before, during or after technical design and, moreover, its content and meaning changes accordingly.

However, on the general level, the construction of a building presupposes that certain activities are implemented and become scheduled tasks of the practical process. Thus, it is of primary importance here to study the generic activities and their interrelations. It should be pointed out that here the word ‘activity’ refers more to the functional nature of doing something instead of its concrete occurrence in relation to the building system, i.e. tasks. This way, more alternative processes can be covered by a description.

Other important aspects to focus on in the study, besides activities, can be searched by surveying studies that examine the factors most critical from the viewpoint of the success of the project (e.g. Hughes 1989, Mohsini 1984, Sidwell 1982, Sanvido et al. 1992). Probably the single most important demand on the building project is (managerial) integration, the ability to co-ordinate the needed differentiation. It was already mentioned as a starting point for this research.

Another more concrete conclusion made by Sanvido et al. (1992) is that the optimisation of information between the parties is also critical. In fact, according to another study, the availability of and access to information is the most important factor affecting the level of performance (Mohsini 1984, Mohsini & Davidson 1992) in the traditional building process. This is also supported by statements according to which the fragmentation of functions and barriers to the effective flow of information between participants has been a major obstacle to productivity and quality in the industry (McGeorge et al. 1994, Aboud-Zeid & Russell 1993).

All in all, this survey gives us reason to give the concepts of “activity” and their interconnections and information “flows” a critical position in the development of the construction process. On the other hand, the question of where to start and how to proceed is also linked to the tools and methods available as well as to the availability of information on practical building processes.
3 MODELLING CONVENTIONS

3.1 OUTLINING THE RESEARCH APPROACH

Above, the complicated nature of the building process was emphasised as it involves many participating organisations and persons. On the other hand, experience, especially from large-scale information-technology development projects, has shown that mere verbal communication cannot create an understanding between various parties and define issues unambiguously. This is due to the fact that, for instance, people with different experiences assign different meanings to the same concepts. Moreover, it is difficult to understand the context to which the described matters belong. (Björk et al. 1991)

Thus, in order to be able to describe construction in a way that is clear to all parties and enables communication between them on the subject, systematic description methods are required (Björk et al. 1991). Redesign of processes also calls for a more systematic approach to understand the weaknesses of present procedures as well as to identify new processes which allows definitive comparison (e.g. Davenport 1993). This, after all, leads to the use of modelling techniques when responding to the above challenges.

Generally, a model is an abstract representation of reality that excludes much of the infinite detail. The purpose of a model is to reduce the complexity of understanding or interacting with a phenomenon by eliminating the detail that does not influence its relevant behaviour. (Curtis et al. 1992) A more detailed study on the meaning and possibilities of modelling in the case of a construction process was made in a sister project of the same research entity by Heinonen et al. (1996).

3.2 INTRODUCTION OF THE ‘IDEF0’ SEMANTICS

Chapter 2 concluded that activities and their interconnections and information flows are of primary importance in the selected development strategy. A method similar to the IDEF0 method (ICAM 1981, Pelkonen & Pulkkinen 1987) is used mostly (Mertins & Süssenguth 1991, Busby & Williams 1993) in the examination and description of these issues. IDEF0 is based on the Structured Analysis and Design Technique, SADT (see Marca & McGowan 1986, Ross 1977). On the other hand, the IDEF family consists of a few modelling methods and the ‘zero’ stands for the one used to produce ‘function models’.

Chung (1989) also found the method best for this purpose (cf. sec. 2.2). Software is also available for convenient model construction while it is also most advantageous to use a well-established method.

IDEF0 employs both natural and graphic languages to convey the meaning of a particular process. Activities are described by boxes which are connected by arrows that represent interfaces or interconnections between the boxes: more information is given in Figure 1.
Figure 1. The basic concepts of the IDEF$_0$ method. The type and meaning of arrows is tied to their relative position to a box; the side of the box has a specific meaning.

IDEF$_0$ models are co-ordinated sets of diagrams. Models bring together and organise diagrams into a hierarchic structure where the diagrams at the top of the model are less detailed than those at the bottom. Thus, an IDEF$_0$ model can be thought of as a tree-shaped collection of diagrams. This is illustrated by the diagram-linking system of the decomposed model in Figure 2.

3.3 RELATED RESEARCH AND ITS RELEVANCY

The selected methodology has been used also for construction process modelling. One of the most famous models was composed by Sanvido et al. (1990) to provide an open information architecture to support the provision of a facility. (Compared to the work presented in this report, Sanvido’s model covers a wider scope of functions of facility management and operation.) The model is used to support computer-integrated construction and to define the critical success factors for construction projects.

The model of Zhong et al. (1994) covers also the overall building process although is quite rough compared to the former. The model by van Merendonk & van Dissel (1989), again, is thorough and includes many schemes, functional and conceptual ones. The ATLAS model (van Nederveen 1995, Bakkeren 1995), for
A diagram contains boxes and arrows (not shown here); external arrows of a diagram must be compatible with those of the corresponding box in a parent diagram.

Each diagram has a node number, which is formed by taking the node number of the parent diagram and appending to it the number of the box being decomposed.

One square is drawn for each box on the parent diagram and the one is shaded, which the diagram decomposes.

Figure 2. The hierarchical structure and reference systematic of the IDEF₀ modelling system (e.g. Marca & McGowan 1986).

its part, describes architectural and structural design processes from specific actor-based points of view. Thus, these submodels are called view-type models and the data content has also been specified.

Corresponding models have also been compiled for understanding and developing new procedures when a specific information system is generated. These models mainly focus on just a part of the building process. Laurikka (1994), for instance, has used IDEF₀, in addition to conceptual models, to present the principles of scheduling information systems while the objective of his research was to describe how CAD-based building product model information can be integrated into the production scheduling system.

Karhu’s model (Karhu et al. 1994) specifies the design of a prefabricated concrete facade from the architectural point of view. A product model of a facade was also developed but the integration with the activity model was done mainly using check lists.

We present here just a few examples — there are many others. The need for a new one may have to be reconsidered.
Huru (1991) has concluded that various breakdown models give a very incoherent picture of the construction process. The names, contents and number of functions alternate according to the author and his definitions; the different language backgrounds cause further confusion.

This is understandable due to at least two reasons. Firstly, process descriptions, models, task lists and the like are usually compiled for a specific purpose, which means that they have been organised from a given viewpoint and vary from case to case. The other reason is that the procedures of the construction process and especially the roles of the parties alternate from country to country and we cannot avoid the culture-specificity of construction especially when modelling details.

On the other hand, the adjustment of scope, viewpoint and purpose is also emphasised as part of the used methodology. Since our primary aim is to model the construction process to support the Finnish national building industry practice and concepts from the viewpoint of overall process co-ordination, the task sets its own constraints and, moreover, produces a unique solution.
4 CONSTRUCTION PROCESS MODEL

4.1 STARTING POINT

An IDEF₀ model always has a clear subject, purpose and viewpoint (cf. Marca & McGowan 1986). The subject, firstly, defines the boundary of a system. In section 2.2 the building process was defined as involving all activities, tasks and roles of the participants, starting with the first initiative for realising a building, encompassing programming, design and construction of the building and ending with maintenance. This definition is relevant also here although the last phase is included only as far as it is strictly related to the construction of a new building and its handover. As regards various roles, only the construction professionals proper are included while customers, authorities, manufacturers, etc. are not.

Secondly, the model itself must be able to answer the set questions with a predetermined level of accuracy. The purpose of the model crystallises the substance of these questions into a compact form. In this case, the purpose is to identify the various tasks of the major parties to the process, and understand how the tasks area interrelated so that the co-ordination of the overall building process can be studied and improved. This also serves as a managerial, or should we say, outside observer’s viewpoint of the entire process. In practise, the viewpoint represents the position from which the system in operation is modelled.

4.2 COMPILATION OF THE MODEL

There are a couple of decomposition strategies for model compilation of which the actor-tied strategy seems more interesting at the top level. This is only natural since it enables fluent utilisation of the present industry-oriented process descriptions and keeps the model in touch with the professional practise. The strategy leads to submodels for each major party while they are also integrated into one model to some extent. The implementation neglects some of the finer aspects of modelling but is a friendly gesture to practitioners/readers.

The integrated process model covers all major design disciplines: architectural, structural, building services and geotechnical. The model also incorporates all the production as well as client's works. The design process submodels and client's works are based on general scope definitions, i.e. “task lists” (RT 10-10575, RT 10-10576, RT 10-10577, RT 10-10579, RT 10-10580), that are recognised as industrial standards, more or less, and various check lists for design disciplines. (The term “client’s work” is used here in keeping with the source document although, the client may employ a consultant to manage the project or the tasks may be carried out by the contractor as is the case in speculative building, etc.)

The production process model is mainly based on the general contractors’ quality management system model (Rakentamisen... 1994), which seems to be the most comprehensive source on production activities. Some other relevant sources have also been utilised where appropriate. For instance, the nomenclatures of building
works and elements, etc. (Talo 90-ryhmä 1993) also have formed the basis for the classification of physical site works. After all, the references are intended to describe the practical building process and are generally thought to do so.

The task lists and the quality system model have overlapping parts. The resulting process model covers completely the designers’ and client’s task lists but, in principle, nothing else as far as those works are concerned. Therefore, the corresponding tasks presented in the quality management system model (e.g. design management) are not included and the model adheres to the traditional design-bid-build process.

On the other hand, the general contractors’ quality management system model covers the activities of a building company very thoroughly and the non-project-specific functions have also been excluded from the process model. Thus, such functions as company management and marketing, for instance, have been left out of the model as they are considered more company-level activities. Collection of tasks and activities has also been partly changed to better serve the aim while the work breakdown structure of the design and client’s work submodels corresponds to that of the source documents, i.e. task lists.

4.3 STRUCTURE AND COVERAGE OF THE MODEL

The resulting construction process model covers the activities needed to carry out a building project by various major parties and integrates these activities as illustrated in Figure 3. The figure’s only purpose is to shed light on the main division of the overall model and, thus, the flows and feedbacks are also only schematic. Detailed submodels are presented below in Part II of this report. They are:

- Section A Client's work process model
- Section B Architectural design process model
- Section C Structural design process model
- Section D Building services design process model
- Section E Geotechnical design process model, and
- Section F Production process model.

As far as the design disciplines and client’s works are concerned, stage-based decomposition is applied mostly. The client and all the design professionals are, in principle, involved in every stage. The share and significance of the work by various parties alternates, however, strongly in different stages. Table 1 tries to shed light on this question and gives a general introduction of various stages.
Figure 3. A schematic diagram of the overall construction process model presenting its main divisions and, moreover, its various subprocess models. Output from each discipline is only shown schematically as, for instance, design although the submodels focus on stage-based interaction in detail.

The client's works play an important role in the whole process, of course. In this context also the early stages of a building project, before briefing, are of importance. The main factor that leads to briefing is the strategic decision of a company. However, these matters are not included in the model as they are considered more company-level than project-specific activities; this corresponds to what has been said about the scope of the production submodel above (sec. 4.2). On the other hand, the contractor’s works begin quite late in the model when an invitation to tender is sent to him according to the traditional process, i.e. the production process submodel. Stage-based decomposition is not as prevailing in this submodel as in all the others.
Table 1. The interfaces and essential points of the process submodels. The stages are traditional although, for instance, the ‘detail design’ phase is also called the ‘construction preparation’ phase. In the compiled model, ‘construction-related’ matters are mainly included in the ‘production process model’ while all the other submodels touch on all the stages. In practice, the stages are also at least partially parallel in many cases.

<table>
<thead>
<tr>
<th>Process stage</th>
<th>Essential points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefing</td>
<td>Briefing is mainly part of the client's works and can be done by the developer/client himself or by his representative, i.e. a professional consultant. Contributions may be received from various design disciplines and the result is a brief which deals with the necessity and possibilities of undertaking the project. The decision to launch the project is based on the brief.</td>
</tr>
<tr>
<td>Programming</td>
<td>Programming is part of the client's work. A programme includes all essential parts concerning individual design disciplines. The result is a programme that in addition to scope and quality-level data, also sets the cost level and schedule. The investment decision is based on the programme.</td>
</tr>
<tr>
<td>Global design</td>
<td>In the global design phase all the designers get into full speed. More data exchange occurs and co-operation is needed when design solutions from each discipline are worked up and checked for compatibility. Also, design solutions often require solutions by others before design can continue.</td>
</tr>
<tr>
<td>Detail design</td>
<td>Detail design of various disciplines is done simultaneously as design solutions need to be compatible. In case of a design-bid-build process the contractor is chosen during this stage which means the decision to build. The contractor’s involvement also means that the construction preparatory stage and erection are parallel to detail design.</td>
</tr>
<tr>
<td>Construction</td>
<td>The major part of construction activities are implemented by the general contractor and his numerous subcontractors. The phase is at least partly parallel with the design phases and, thus, exchange of information increases, although the physical construction of various systems is not treated in detail in the model. The stage ends in the decision to accept.</td>
</tr>
<tr>
<td>Take-over</td>
<td>The construction phase is followed by the taking-into-use phase. Then, the activity intended for the building is launched and the readiness for use is monitored. Thus, all the major parties are involved, although now to a very small extent. The project ends with a guarantee inspection, possible guarantee repairs and termination of guarantees.</td>
</tr>
</tbody>
</table>
4.4 READING THE MODEL

The model follows the IDEF0 syntax and guidelines outlined in section 3.2. This makes it easy to use and understand and ensures an unambiguous interpretation. However, since the model holds to the division of labour of today’s industry, more detailed instructions for reading the process model diagrams are needed. In other words, the integration of various submodels is based on an adhoc solution.

Figure 4. shows how a control or an input that comes from outside the specific subprocess model in question, can be traced quite easily, just by identifying the

![Diagram of a process model showing the integration of architectural and structural design submodels.](image)

Figure 4. The upper part of the figure shows an extract from the architectural process model where “Basic solutions” are designed and constitute the output of the “Design alternatives” activity. The lower part of the figure shows the input that is needed for structural design (model). The input may be traced on the basis of the abbreviation “ARCH” which refers to the architectural process submodel.
flows. For instance, basic solutions are produced in architectural design and used later also in structural design.

When modelling flows into the processes, the basic idea has been that the use of an output from one activity is mainly relevant only within a single process. If the output from one activity is needed also in another submodel, the corresponding branch is not shown in the source model but only in the receiving one.

For instance, if HVAC design needs an input from structural design, there is no trace of this in structural design model but only in the HVAC design model. In other words, it is not relevant from the structural design point of view. On the other hand, the corresponding receiving activity (e.g. in HVAC) should obtain knowledge about where the information or data is produced which enables it to request the needed information.

The selected approach is similar to that of the design task lists which functioned as source documents for the model. This approach has also been followed in the ATLAS model (Bakkeren 1995, van Nederveen 1995), called a “view-type model” which is aimed to serve the selected party.

In the model, the following abbreviations and hierarchy are used to describe the different design disciplines and the works of the other parties:

- **CLI** = client’s works
- **DES** = design works
 - **ARCH** = architectural design
 - **STR** = structural design
 - **GEO** = geotechnical design
 - **BSE** = building services design
 - **HVAC** = heating, ventilation and air conditioning design
 - **AUT** = automation design
 - **TEL** = telecommunications design
 - **ELE** = electricity design
 - **INT** = interior design
 - **CON** = contractor’s works and
 - **AUTH** = authorities’ works.

Building services design is an “umbrella term” that covers the more specific design disciplines of automation, electricity, etc. Thus, “BSE” is used as a collective term at the upper levels of the model while the different disciplines are distinguished at the lower levels that require a detailed approach. Another collective abbreviation is “DES” which refers to all designers but has been used only in the “production submodel”.

Abbreviations not only refer to a certain party as an actor of an activity, but are also used to refer to documents and information flows originating with the party. Document names are formed by connecting the abbreviation of the
author/profession and the descriptive part focusing on the document contents. For instance, the ARCH programme refers to the programme contribution from the architectural design process.

As regards the flows in general, a fundamental idea of the IDEF0 is that arrows are collections of things. This means that all the flows are not expressed in detail in every context where they exist. The decomposition also alternates. This can be seen, especially, in the “production submodel” which imports all the design (flows) to the top level and decomposes the clustered data based on the needs of detailed activities. This is different from the design phase decomposition.

The “production submodel” neither imports nor exports anything below the top level (A0) and thus, the mode differs from that of the designers’ and client’s works. (Tunnelling is, however, used also at the decomposed levels of the “production submodel”.)

Thus, the model includes more information than would appear and arrow joints and branches are a means of managing the deluge of information. An arrow is always labelled before its branch and after its joint in order to indicate the collection. Branches which are not labelled are assumed to contain either all or some of the thing indicated by the aggregate label before the branch or after the joint. (Marca & McGowan 1986)
5 RESTRICTIONS AND FURTHER DEVELOPMENT

5.1 REVIEW OF THE MODEL STRUCTURE

The decomposition strategy followed at the top level of the overall process model was based on the prevailing division of labour between the parties to the building process (as was explained in section 4.2). Thus, the client, various design professionals and the general contractor were identified. Then, the strategy adhered mainly to phase-based thinking at the lower levels although the activities which have the primary function of controlling other activities are exceptions in this respect.

The deviation from the main line in the case of control and management activities should be logical since it is impossible to describe or predefine the existence of these activities in the context of the sequential approach. Usually these tasks exist either “continuously” to ensure the desired outcome, or whenever they are needed as a result of mistakes or confusion. Such control may be an aim towards a common understanding, some sort of change or a proposed change in plans, etc. which would result in recursion.

In the model, management stands out especially in the site production phase which adheres more to the function-type model. After all, detailed modelling is not needed since, in practise, the project-specific task schedules serve the detailed needs and it is more important to understand the general functioning of the management.

As a main principle, however, phase-based thinking and emphasis on sequentiality were deemed useful. This was also largely a result of the source material used. Especially the task lists adhered strictly to this principle. The reason behind the sequential approach in both cases is practical utilisability. Such an approach is needed to understand “what we should do next” since, obviously, it is easier to follow a model where interrelated activities are organised together instead of on the basis of conceptual similarity.

Thus, it was deemed that a theoretically correct model, that emphasises “activity nature” and recursion instead of “task nature” and sequentiality would lead to an abstract model of little practical use. At least it would have been extremely difficult and risky as a first trial and it would have required highly developed computerised tools to exploit. This led to the present practise which was not considered the final solution.

In addition, the selected decomposition strategy emphasising sequentiality is in line with the wishes of the sister project that focuses on the utilisation of this kind of reference models (Hannus et al. 1996, see sec. 6.2). On the other hand, the management activities that are not modelled according to the sequentiality principle are broken down into decisions and meetings, etc. in case-specific
applications. Besides, the consideration of the decomposition strategy results in suggestions for future studies, both small step (sec. 5.2) and more fundamental improvements (sec. 5.3).

5.2 TOWARDS IMPROVED MODEL VALIDITY

The model presented here is state-of-art as it is the first one trying to draft a systematised description of the prevailing building practise. For instance, design process submodels consist almost exclusively of general task lists (see sec. 4.2); they show advantages and disadvantages as they are. The model doesn’t cover the entire overall process and all the activities of various parties as accurately. Thus, it is clear that this kind of initial model should still be improved to serve various interests and should be considered as a platform for more advanced and specific models.

The entire process model may be developed at least in the following areas:

- the architectural submodel and its activities could be modelled from two viewpoints, one emphasising the main designer’s tasks and the other the architectural design tasks proper,
- effects of alternative procurement and delivery methods and various modes of operation should be taken into account, and
- the activities of subcontractors and suppliers should be added to the model and their co-operation with the existing parties should be considered as well.

The main designer's tasks are part of architectural design tasks in the task list and in the corresponding submodel. In practice, few architects do all these tasks. Also, the distinction between the tasks of the client and other disciplines in briefing and programming is not clear which applies not only to the compiled process model but also to the task lists.

Further, the division of labour in the model follows that of the source documents. This is not appropriate from the general viewpoint since modelling according to the traditional roles of the parties does not support the alternative modes of operation. Especially, since the building practise is changing drastically (e.g. Lahdenperä 1995). For instance, the tender by the general contractor may be given earlier or the process may follow some kind of partnering procedures. Thus, the functioning and validity of the model should be studied in relation to various alternative construction processes (cf. sec. 2.3).

It is also obvious, that genericness and complete integration of the subprocesses would require that the overall process is modelled from the information point of view. This means that any data or information that is needed in a certain activity and is a result of another activity, is modelled and produced regardless of who the producer and user of the data are. This was, indeed, recognised when the modelling strategy was decided but such a generic approach was deemed too difficult and risky to implement without using this kind of model as an intermediate version.
Anyway, future work should focus also on the integration of the various submodels for which support is available from the sister project which analysed the detailed information flows between the parties in one realised building project (Tanhuanpää & Lahdenperä 1996). The report by Lakka & Nykänen (1991) is another relevant source as concerns design interfaces.

The term “intermediate version” is used and considered appropriate since, to be really useful in practice, the model should be adaptable to various case-specific solutions without any bigger compromises. Use should also become much easier, which, again, is linked to the development of the modelling methods and computerised browsers, etc. which require deep-going and laborious development.

5.3 TOWARDS AN IMPROVED MODELLING APPROACH

The decomposition strategy led to some selections and simplifications from the viewpoint of alternative processes as was explained above. In practice, the model adheres to something that can be called the traditional building process. Thus, it makes sense to return to the question whether the process model applies to all variations of constructing a building (cf. sec. 2.3).

Figure 5 sheds light on these variations by introducing a few interchangeable ways to carry through some parts of the process. Firstly, we have to notice that the figure represents only cases where the division of labour and organisational relations between the parties are alike (while a more thorough explanation of those processes is skipped here). If more leeway is allowed in alternative contractual and operational relations, the division of labour remaining the same, a few additional reasonable processes can be found as shown in the source document by Lahdenperä (1994). The alternative processes involve, in principle, the same activities but their order is different.

Next, we can deliberate what happens if the division of labour between the parties is also changed. It does not only influence the assignment of activities but changes their nature in many cases. For instance, if we compare the system unit procurement of the above example and the traditional process where the technical design is done by the client’s designer, it is obvious that the activities become different. While in the traditional design process the detailed solution is a result of “straightforward” design that, stage by stage, becomes more accurate, the other process concentrates initially on defining the clear functional requirements, pet ideas of designers and unambiguous selection criteria for the comparison of tendered solutions. Thus, the activities differ so much that it is practicable to use separate concepts to refer to them in order to be able to describe the used practice best.

However, the solution is not that clear. In the case of similar kinds of processes, the different order of activities (cf. Figure 5) is likely to cause some differences in “similar” activities. On the other hand, also the activities of extremely different processes should have many common components since the aim to “build a
building” is the same. This raises a question about the modelling approach and the level of abstraction; how to combine top-down and bottom-up approaches?

Let’s return to the role of reference models: they describe typical, but not actual, processes and make it possible to reuse the existing construction knowledge (Hannus & Pietiläinen 1995). They are only suggestive examples and have to be adapted to each separate case anyway. Therefore, modular thinking is suggested for compiling reference models so that by combining various library modules and standard procedures any building project and/or process could be described. Modularity offers, at least in theory, a means to cover a wide field of processes with a reasonable amount of alternative components. This could become relevant as information technology and its applications develop (cf. Hannus et al. 1996).

At the lower levels, another reason supporting the strive for modularity is feedback and iteration which are part of all function-type models but make it difficult to understand and define the activity occurrences in the process. For instance, an activity may improve the exactness of information for each iteration. For this reason, an activity may occur several times in a process which could make use of the modular approach sensible.

An example could be an activity like “Present results” in stagewise development of building designs. The same activity is done several times during a design process but different data is handled, i.e. input could be “a basic solution”, “a proposed solution”, etc. Of course, in practise, the activity may have to be changed to get the desired output which leads to controversy since the activity is not the same anymore. Thus, the success of this approach is not self-evident or unproblematic but at an appropriate level of abstraction it seems to be worth further consideration.

This example, dealing with design development, is again connected to the relation between the activity models and the data models. Thus, a modelling approach and tool that enable combining a data model with an activity model should also be considered. In fact, a few tools have been developed and they are based on the IDEF0 and EXPRESS or IDEF1X methodologies (Maritime 1995, Meta Software 1996). There, the data is connected with the flows, e.g. the shape of a facade is depicted using the corresponding EXPRESS definition, whereas the flow corresponds to an output or input of the IDEF0 methodology.

In summary, we suggest that alternative processes be given more attention in future work to provide guidelines for module composition. It is also suggested that internalisation of the above concepts of division of labour, contractual and operational relations and sequentiality could pave the way for modular thinking. Thus, it is hoped that this tentative discussion helps devise strategies for future work. However, since the model is not an end in itself, its application should be developed and tested at the same time which brings us to the subject matter of Chapter 6.
Figure 5. Alternative processes for system unit procurement by the main contractor; i.e. one supplier is liable for technical design and assembly of a system of a building, etc. (Lahdenperä 1994).
6 UTILISATION OF THE MODEL

6.1 GENERIC MODELLING INCENTIVES

In general, this reference model offers the opportunity to conduct various view-dependent surveys and classifications while also serving as a platform for more specific models. Thus, it and its derivatives can be utilised in many ways in the development and control of the building process due to the following reasons:

- **Common concepts and interpretation.** Models help define issues and contexts clearly and create mutual understanding between people and parties with different experiences. The standardisation of certain interfaces and the support to the classification of information and development of information and control systems is also significant.

- **Development of processes.** The analysis of models can yield new and more efficient operational procedures for construction. Models and computerised tools facilitate the design, construction and testing of various means of improving efficiency and new types of operational processes without real risks. They also allow rating alternative implementation solutions against each other.

- **Process control.** Models can be used to plan and control construction, to match and synchronise the work of various parties and to set intermediate goals. Models can be used, for instance, to define the information needs and material flows of a process and to fix the corresponding timewise goals with respect to various activities and the various parties.

These aims are quite general and, in fact, gave the motivation to launch this study. For that reason, section 6.2 focuses more on the specific usage-related findings of a sister project of the same research entity. Here, the diverse possibilities are only mentioned. They are also examined in Table 2.

A generic modelling approach is dealt with in more detail in another sister project by Heinonen et al. (1996) which also aims to extend the mentioned concepts related to the building process to cover more than just “an activity” and “a flow” (and “an actor”) as is the case with this model.

6.2 SPECIFIED NOVEL APPLICATIONS

The effort to build a reference process model is described in this report. The work is, however, just part of the research entity focusing on the development of construction process modelling methods and capabilities. One of the sister projects, by Hannus et al. (1996), has been developing computerised modelling capabilities and drafting application possibilities for reference models.
Table 2. Why model? The table suggests a possible use for a model and, correspondingly, incentives to inspire modelling efforts. The lists have been modified from the one presented by Curtis et al. (1992).

<table>
<thead>
<tr>
<th>FACILITATE HUMAN UNDERSTANDING AND COMMUNICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Represent process in a form understandable to humans</td>
</tr>
<tr>
<td>• Enable communication about and agreement on construction processes</td>
</tr>
<tr>
<td>• Formalise the process so that people can work together more effectively</td>
</tr>
<tr>
<td>• Provide sufficient information to allow an individual or team to perform the intended process</td>
</tr>
<tr>
<td>• Form a basis for teaching the intended process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPORT PROCESS IMPROVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identify all the necessary components of high-yield construction development</td>
</tr>
<tr>
<td>• Reuse well-defined and effective construction processes in future projects</td>
</tr>
<tr>
<td>• Compare alternative construction processes</td>
</tr>
<tr>
<td>• Estimate the impacts of potential changes to a construction process without putting them into actual practice</td>
</tr>
<tr>
<td>• Assist in the selection and incorporation of technology into a process</td>
</tr>
<tr>
<td>• Facilitate organisational learning regarding effective construction processes</td>
</tr>
<tr>
<td>• Support managed evolution of a process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPORT PROCESS MANAGEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Develop a project-specific process to accommodate the attributes of a particular project, such as its product or organisational environment</td>
</tr>
<tr>
<td>• Support development of plans for the project and forecasting the progress</td>
</tr>
<tr>
<td>• Monitor, manage, and co-ordinate the process</td>
</tr>
<tr>
<td>• Provide a basis for process measurement, such as definition of measurement points within the context of a specific process</td>
</tr>
</tbody>
</table>

The developed modelling tool is prototype software for browsing, sorting and analysing the construction processes. The tool itself is programmed by using Paradox software (Borland International 1996) while Microsoft Project software (Microsoft 1996) is utilised for scheduling as shown in Figure 6. The tool requires that the models imported and used as reference data are completed by using IDEF\(_0\) while the specific software used and required so far is Design/IDEF (Meta Software 1996). Correspondingly, the process model introduced in this report is compiled by using this particular software while other software also exists.
Many useful applications are available when using reference process models and the tool is meant to be a big help in this respect. In summary, the presented application areas are the following:

- **Quality systems of companies.** Developing, maintaining, documenting and distributing quality systems of a construction company (using internal WWW).
- **Project-specific quality plans.** Developing project-specific quality plans to describe the tasks and scopes of liabilities of the parties, etc.
- **Co-ordination of construction projects.** Integration of the processes of the participants in a construction project, compilation of plans and schedules.
- **Contract management.** Setting intermediate goals for a project and drawing up the related contracts by sorting the appropriate flows and interrelations.
- **Evaluation of alternative processes.** Evaluation of alternative implementation solutions for a construction project based on duration, complexity, etc.
- **Process knowledge reuse.** Development of reusable project- and company-specific processes to be integrated for planning purposes (library subprocesses).
7 CONCLUSIONS

One fundamental reason for writing this paper was the idea that development efforts should be focused more on the entire building process instead of suboptimisation and view-dependent studies that neglect many of the relevant items that have an influence on the performance of the construction process. The complicated mess of construction-related items and problems cannot, however, be fully understood by the limited human mind. The modelling approach is an effort to understand the issues and problems of construction. Thus, the orientation has been more development-driven than explorative.

Moreover, the main focus of the study has been on the functions and flows of the overall building process since it was found that they are very critical for the development of the building procedures. The study was conducted in a systematic way based on the well-established IDEF0 method. The client’s and designers’ task lists and the general contractor’s quality management system model have formed the basis of this work. These documents are believed to describe the industrial practise best and were selected to tie the study to practise.

Thus, the resulting building construction process model covers the functions of the client, various design professionals and the general contractor. The model includes more than 300 activities (from all levels) and significantly more flows to define the interrelations. In addition, definitions are offered for flows whenever the contents may be open to interpretation and, moreover, an English - Finnish glossary is prepared for all flows and activities of the model.

As to the composed model, it adheres to the so-called traditional building process and a sequential decomposition strategy after the main division into the main parties has been done at the top level. Therefore, we suggest that alternative building processes and their compatibility with the model have to be studied and developed further. Also, subcontractors’ and suppliers’ work should be given more attention in further development while the integration of the existing activities by separate parties should also be examined more carefully. In fact, the information point of view should be emphasised more in model building to really integrate the involved activities.

On the other hand, the study points out the corresponding necessities in the development of the source material for which the model development could offer a good starting point. Consideration of newer types of building processes and the division of architectural task list into main designer’s tasks and architectural design proper are among the needed improvements.

The possibility of managing all the variation in the building process through the modular approach should be examined, so that by combining various library modules and standard procedures, any building project or process may be described. This will be increasingly possible as information technology and its applications develop, which, on the other hand, is a precondition for the effective utilisation of process models. Another challenge is the integration of process model flows which
define the information exchange in building design, and product model data. These challenges are, however, incorporated into the development of modelling concepts and syntax, besides being determinants of practical building.

Generally, the resulting reference model offers possibilities for its various view-dependent examinations and functions as a platform for more specific models. Models support communication and help in attaining a common understanding of process-related issues. Further, the modelling approach also supports process re-engineering and improvement efforts as well as offers new means for (the improvement of) the building process management.

In practice, when integrated with modern computer technology, the compiled construction process model and its future versions allow the evaluation of alternate implementation solutions for the construction project, the planning of various project- and company-specific processes and assist in the development and documentation of quality management systems. At the same time, the model and its scopes of liabilities, to be selected, form the key tools for setting intermediate goals for the construction project, the co-ordination of various parties’ work, etc.

After all, the study concludes that continued use of the modelling approach in the development of building process performance is worthy of future work which will repay the costs before long. This statement is based not only on this research but also on some ongoing applications. The construction process is, however, such a mess that a lot of work still remains to be done. What has been done here is only the first step.
REFERENCES

Hannus, M., Lahdenperä, P. & Vahala, P. 1996. Computerised process modelling as a basis for improved project management. 15 p. (manuscript for a prereviewed journal article)

PART II:

THE COMPLETE CONSTRUCTION PROCESS MODEL
SECTION A:
CLIENT'S WORK PROCESS MODEL

Table of contents

ACTIVITY MODEL ...43
 A-0 MODEL SCOPE ..43
 A0 PRODUCE AND MANAGE BUILDING PROCESS ..44
 A1 DRAW UP BRIEF ...44
 A2 DRAW UP PROGRAMME ...46
 A3 PREPARE FOR DESIGN ...46
 A4 SUPERVISE DESIGN ..48
 A5 PREPARE FOR CONSTRUCTION ..49
 A6 SUPERVISE AND CONTROL CONSTRUCTION ...50

LIST OF ACTIVITIES ...52

LIST OF FLOWS ..54
ACTIVITY MODEL

A-0 MODEL SCOPE

Client's work during the building process involves overall supervision of design work and managing official opinions and decisions concerning design solutions at different stages.

The client's work process model is divided into six different stages that are briefing, programming, prepare design, supervise design, prepare construction, supervise construction and, finally, use and maintenance stages.

The presented process model is based on a task list (RT 10-10575). The A-0 diagram is shown in Figure 1.

Figure 1. Model scope.
A0 PRODUCE AND MANAGE BUILDING PROCESS

The client's work begins with briefing for which assistance is received from different design disciplines (Figure 2). These disciplines are architectural design, structural design, building services design and geotechnical design. This guarantees sufficient expertise in all design disciplines.

It should be noted that client's work does not necessarily lead to a project. It is considered part of a company's strategy. The strategy includes a description of for instance the economic situation.

Figure 2. Produce and manage building process.

A1 DRAW UP BRIEF

Briefing is used to identify changes in activities of the client (Figure 3). These changes may require more space, for instance, a precast element manufacturer may need more space for the production. The operational alternatives to satisfy the needs may be a new building or renovation of existing buildings.

Briefing gathers information from different design disciplines into a common project brief which includes the corresponding parts from:
- architectural design,
- structural design,
- building services design, i.e., HVAC, electric, building automation design, telecommunications design,
- geotechnical design, and
- interior design.

It should be noted that project briefs from other disciplines serve merely as additional information, that is, they represent opinions and comments concerning the specified discipline.

The requirements are defined in the first activity, e.g., the manufacturing of a larger number of products requires additional space. In A13 Prepare decision for programme, analyses of environmental effects are carried out and the requirements for building permit are established.

At this stage, a negative decision may be made which means that no changes are necessary. Thus, the project brief does not lead to a programme. The project brief is a basis for programming.

Figure 3. Draw up brief.
A2 DRAW UP PROGRAMME

The purpose of programming (Figure 4) is to lay a foundation for the investment decision. Requirements set during programming concern functional aspects, cost, profitability, schedule, mode of operation, maintenance and building permit. The programme is assembled in A26 including the investment decision which is a control.

Main designer's work plays an important role as all tasks presented here are also parts of architectural tasks (see the architectural model).

For instance, the establishment of a space programme is the main designer's task. Client's work needs assistance from other disciplines.

Figure 4. Draw up programme.

A3 PREPARE FOR DESIGN

Preparation of design includes organizing design, choosing designers and concluding design contracts (Figure 5). Design schedule and design instructions are assembled. Design instructions include also CAD-instructions. Contracts are
made after choosing designers. Design instruction is given during programming stages by the main designer.

Selection of designers (Figure 6) may be made in several different ways:

- direct selection, i.e., designers are invited directly,
- negotiation, i.e., several candidates are negotiated with,
- selection based tender, i.e., designers submit tenders based on invitation to tender,
- design competition, i.e., usually the design of valuable buildings for which design competition are arranged.

Selected designers will then start the design work.

Figure 5. Prepare for design.
Figure 6. Select designers.

A4 SUPERVISE DESIGN

Controlling and supervising design includes several tasks (Figure 7). Design solutions at different design stages are compared, checked and approved. The decisions are of importance for both the client and the designers since they function as guarantees for obtaining the desired results and yield acceptable designs concerning functional, economical, esthetical, technical as well as environmental aspects.

The decisions are made by the client. A contract is usually signed before.
Figure 7. Supervise design.

A5 PREPARE FOR CONSTRUCTION

The purpose of this activity is to prepare and process invitations to tender (Figure 8). The mode of operation is also decided. The selection of contractors is based on tenders. After the selection, contracts are concluded.
A6 SUPERVISE AND CONTROL CONSTRUCTION

This activity guarantees that the construction stage is executed according to contract (Figure 9). The project schedule is also followed in its implementation.
Figure 9. Supervise construction, take over and manage warranty tasks.
LIST OF ACTIVITIES

English

[A0] Produce and manage building process

[A1] Draw up brief
 [A11] Define requirements
 [A12] Clear space acquisition alternatives
 [A13] Prepare decision for programme

[A2] Make programme
 [A21] Define requirements imposed by activities and facility management
 [A22] Draw up space programme and requirements
 [A23] Clear building site and procedures for building permit
 [A24] Plan schedule and mode of operation
 [A25] Set cost objectives, clear up financing, profitability and budget
 [A26] Prepare investment decision

[A3] Prepare design
 [A31] Organize design work
 [A32] Select designers
 [A321] Decide on selection method
 [A322] Select directly
 [A323] Negotiate
 [A324] Select based on tenders
 [A325] Organize competition
 [A33] Conclude design contract

[A4] Supervise design
 [A41] Start design
 [A42] Supervise
 [A43] Compare design solutions
 [A44] Check and evaluate designs against objectives and requirements
 [A45] Get designs approved
 [A46] Control acquisition of permits

[A5] Prepare for construction
 [A51] Select mode of operation
 [A52] Prepare invitations to tender

Finnish

[A0] Tee hankkeen rakennuttamistehätävät

[A1] Tee tarveselvitys
 [A11] Määrittele tavoitteet
 [A12] Selvitä tilanhankintavaihtoehdot
 [A13] Valmistele hankepäätös

[A2] Tee hankesuunnittelu
 [A21] Tarkista ja määritä toiminnan ja kiinteistönpidon asettamat tavoitteet
 [A22] Laadi tilaohjelma selvitä tilojen vaatimukset
 [A23] Selvitä rakennuspaikka ja lupamenettelyt
 [A24] Suunnittele hankkeen ajoitus ja toteutustapa
 [A25] Aseta kustannustavoitteet, selvitä rahoitus, kannattavuus ja budjetti
 [A26] Valmistele investointipäätös

[A3] Valmistele suunnittelu
 [A31] Organiso suunnittelu
 [A32] Valitse suunnittelijat
 [A321] Päätä valintamenettely
 [A322] Tee suora valinta
 [A323] Tee neuvotteluvalinta
 [A324] Tee tarjousvalinta
 [A325] Järjestä kilpailu
 [A33] Tee suunnittelusopimus

[A4] Ohjaa suunnittelua
 [A41] Käynnistä suunnittelua
 [A42] Valvo suunnittelua
 [A43] Vertaile rakaisuvaihtoehtoja
 [A44] Tarkasta ja arvioidu suunnitelmien tavoitteenmukaisuus
 [A45] Hyväksytä suunnitelmat
 [A46] Valvo viranomaislupien hankkimista

[A5] Valmistele rakentaminen
 [A51] Valitse toteutusmuoto
 [A52] Laadi tarjouspyyntöasiakirjat
[A53] Prepare selection of contractors
[A54] Make construction decision
[A55] Conclude contracts
[A56] Manage procurements of client

[A6] Supervise construction, take over and manage warranty tasks
[A61] Supervise and control construction
[A62] Supervise subcontracting
[A63] Manage payments
[A64] Do additional work and modifications
[A65] Manage acquisitions of builder
[A66] Manage special cases

[A53] Valmistele urakoitsijavalinnat
[A54] Tee rakentamispäätös
[A55] Tee urakkasopimukset
[A56] Hoida rakennuttajan hankinnat

[A6] Ohjaa rakentamista, tee vastaan- ja käyttöönotto sekä hoida takuuaika
[A61] Valvo ja ohjaa rakentamista
[A62] Valvo alihankintoja
[A63] Maksuliikenne
[A64] Lisä- ja muutostyöt
[A65] Rakennuttajan hankinnat
[A66] Erikoistapaukset
LIST OF FLOWS

English

Additional needs

- Additional needs are fulfilled. Modifications are also cleared up.

Analysis of environmental effects, Requirements for building permit

Announcements, Invitation to tender, List of contractors, Additional requests, Minutes of tender opening, Comparison of tenders, Cost estimation, Meeting memos

Approval of selected subcontractors and equipments

Approved designs, Documented decisions

ARCH brief, STR brief, BS brief, GEO brief

ARCH brief, STR brief, BS brief, GEO brief

ARCH design

ARCH programme

- The programme of architectural design contains parts of programmes of other design disciplines if the architect is the main designer.

Bills

- Bills are checked.

Brief

- Brief contains requirements by the client. See also briefs for other design disciplines.

BS design

BS programme

- The building services design

Finnish

Lisätarpeet

Ympäristövaikutusanalyysi, Lupaedellytykset

Ilmoitukset, Tarpousyynnöt, Urakoitsijaluettelot, Lisäkirjeet, Tarjousten avauspöytäkirja, Urakkatarjousten vertailulukko, Kustannusarvio, Neuvottelumuistiot

Hyläksytyt alihankkijat ja laitehankinnat

Hyläksytyt suunnitelmat, Päätösdokumentit (päätös suunnitteluratkaisusta)

ARK-tarveselvitys, STR-tarveselvitys, TATE-tarveselvitys, GEO-tarveselvitys.

Arkkitehtti-, rakenne-, talotekniikka- ja geosuunnittelun tarveselvitykset.

Arkkitehtisuunnittelu

ARK-hankesuunnitelma

- Hankesuunnitelma sisältää myös muiden suunnittelualojen hankesuunnitelmat mikäli arkkitehtti toimii myös pääsuunnittelijana.

Laskut.

- Laskut tarkistetaan.

Tarveselvitys

- Tarveselvitys sisältää asiakkaan tarpeet. Katso myös muiden suunnittelualojen tarveselvitykset.

TATE-suunnittelu

TATE-hankesuunnitelma.

- Sisältää talotekniikan osalta hanke-
<table>
<thead>
<tr>
<th>Document Content</th>
<th>Finnish Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>programme contains only parts related to building services design issues.</td>
<td>suunnitelman.</td>
</tr>
<tr>
<td>Building ready for use</td>
<td>Käyttövalmis rakennus</td>
</tr>
<tr>
<td>Building site, Juridical constructability, Geotechnical aspects, Condition, Renovation programme, Site usage, Usage of spaces, Effects on environment, Measures to be taken,</td>
<td>Rakennuspaikkaselvitys, Juridinen rakentamiskelpoisuus, Geotekninen selvitys, Kuntokartoituksen, Korjausohjelma, Tontinkäyttäiselvitys, Tilankäyttöselvitykset ja kaaviot, Ympäristöpaikkaselvitykset (YVA), Toimenpideohjelma.</td>
</tr>
<tr>
<td>Candidate designers</td>
<td>Suunnittelijakandidaatit.</td>
</tr>
<tr>
<td>- Possible designers.</td>
<td>- Mahdolliset suunnittelijat.</td>
</tr>
<tr>
<td>Checked and approved selections of subcontractors and equipments</td>
<td>Hyväksytetään alihankkijat ja laitevalinnat</td>
</tr>
<tr>
<td>Chosen contractors Chosen equipment</td>
<td>Valitut urakoitsijat, Valitut laitteet</td>
</tr>
<tr>
<td>Client</td>
<td>Rakennuttaja</td>
</tr>
<tr>
<td>Construction decision</td>
<td>Rakentamispäätös</td>
</tr>
<tr>
<td>Contract programmes, Requirements of contract programme concerning schedule, Blank sheets, briefs, Bills of quantities, Scope of contract appendices, Technical documents, Work safety programme</td>
<td>Urakkaohjelmat, Urakkaohjelman aikatauluvaatimukset, Lomakkeet, luettelot, Määrluettelot, Urakkarajaliitteet, tekniset asiakirjat, Työturvallisuusohjelma</td>
</tr>
<tr>
<td>Contractor</td>
<td>Urakoitsija.</td>
</tr>
<tr>
<td>Contracts</td>
<td>Sopimukset</td>
</tr>
<tr>
<td>Cost objectives, Activity costs, Financing plan, Tenancy estimate, Profitability analysis, Budget</td>
<td>Kustannustavoitteet, Toimintakustannus selvitys, Rahoitussuunnitelma, Vuokralaskelma, Kannattavuuslaskelma.</td>
</tr>
<tr>
<td>Data of building project</td>
<td>Rakennushankkeen tiedot.</td>
</tr>
<tr>
<td>Data on building project</td>
<td>Rakennushankkeen tiedot</td>
</tr>
<tr>
<td>Decision on approved design solutions</td>
<td>Päätös hyväksytystä suunnitteluratkaisuista</td>
</tr>
<tr>
<td>Decision on design solution</td>
<td>Päätös suunnitteluratkaisusta</td>
</tr>
<tr>
<td>Decision on selection</td>
<td>Valintapäätös</td>
</tr>
<tr>
<td>Decision to implement programme</td>
<td>Hankepäätös</td>
</tr>
</tbody>
</table>
• Decision is needed for further elaboration.
 Description of activity, Activity objectives, Space management, Profitability objective, Life cycle objective, Ecological objectives, Maintenance programme,

 Descriptions of alternatives, Descriptions of alternative sites, Condition analysis, Profitability analysis

 Design instructions
 • Design instructions consist of general and specific guidelines and instruction for design.

 Design schedule (ARCH)
 • Design schedule contains detailed information on schedules.

 Design solution
 Designers
 • Designers are the chosen designers.

 Designs for competition
 Dimensional requirements, Space programme (room diagrams, space diagrams, special requirements), Scope objective

 Direct selection
 Estimation of environmental effects

 Feedback
 Financing schedule, Budjet reports, Invoices

 GEO design
 GEO programme
 • The geotechnical design programme is only concerned with geotechnical design issues.

 Pääöstä tarvitaan jotta hanke voi jatkua.
 Toiminnan kuvaus, Toiminnalliset tavoitteet, Tilahallintoselvitys, Tuottotavoite, Elinkaaritavoite, Ekologiset tavoitteet, Ylläpito-ohjelma.

 Vaihtoehtojen kuvaukset, Rakennuspaikkavaihtoehtojen kuvaukset, Kuntoselvitys, Tuottoanalyysi

 Suunnitteluhjeet.
 • Suunnitteluhjeet sisältävät yleiset ohjeet sekä hankekohtaiset ohjeet.

 Suunnitteluaikataulu (ARK)
 • Suunnitteluaikataulu sisältää detailjit (tämä tulee pääsuunnittelijalta).

 Suunnitteluratkaisu
 Suunnittelijat
 • Valitut suunnittelijat.

 Kilpailusuunnitelmat.

 Tilojen mitoitusperusteet, Tilohjelma (huonekortit,tilakaavioit, tilojen erityisvaatimukset), Laajuustavoite

 Suora valinta.

 Ympäristövaikutusten analyysi

 Palaute

 Rahoitussuunnitelma, Budjettiraportit, Laskut

 Geotekninen suunnittelu

 GEO-hankesuunnitelma
 • Geotekniikan hankesuunnitelma sisältää geoteknistä näkökohdat.
Geotechnical analysis (GEO), City plan (AUTH), Local planning (zoning) (AUTH), Ownership (AUTH)

Growth prognosis, Description of strategic alternatives, Trends concerning environment and business, Effects

Implemented additional works
Implemented special cases
Inspection of designs by client, Estimate on building parts, Presentation and grounds for approval of designs,
Investment decision
Invitations to tender, Tenders, Orders and contracts
Layout drawing
Managed additional works
Managed special cases

Alustava geotekninen analyysi (GEO), Asemakaava (VIR), Kaavoitustilanne (VIR), Omistusoikeus (VIR)
Kasvuennuste, Strategiset vaihtoehdot, Suhdanteet, Vaikutukset
Hoidetut lisäyöt
Hoidetut erikoistapaukset
Rakennuttajan suunnittelukatselmuspöytäkirja, Rakennusosa-arvio, Esitys ja perustelut suunnitelmien hyväksymiseksi
Investointipäätös.
Tarjouspyynnöt, Tarjoukset, Tilaukset ja sopimukset
Asemapiirustus
Hoidetut lisäyöt
Hoidetut erikoistapaukset
SECTION B: ARCHITECTURAL DESIGN PROCESS MODEL

Table of contents

ACTIVITY MODEL ..61
 A-0 MODEL SCOPE ..61
 A0 PRODUCE AND MANAGE ARCHITECTURAL DESIGN DATA62
 A1 DRAW UP BRIEF ..63
 A2 DRAW UP PROGRAMME ..63
 A3 MAKE GLOBAL DESIGN ..64
 A31 Start building design ...65
 A32 Design basic alternatives ..66
 A33 Propose solution ...67
 A34 Design schemes ...68
 A4 MAKE DETAIL DESIGN ..69
 A5 DO DESIGN TASKS DURING CONSTRUCTION71
 A6 DO TASKS DURING USE AND MAINTENANCE71

LIST OF ACTIVITIES ..72

LIST OF FLOWS ..75
ACTIVITY MODEL

A-0 MODEL SCOPE

The presented architectural design process model is based on a task list (RT 10-10576 ARK 95). The basic model does not separate the main designer’s tasks and normal architectural design work. The main designer’s function is to coordinate and supervise the design work of all other design disciplines (structural, HVAC, etc.). It should be noted that the main designer may be a group consisting of representatives of various design disciplines.

The process is divided into six different stages. These are briefing, programming, global design, detail design and design during construction and the tasks during the handover. It should be noted that the main architectural design work concerns global and detail designs, presented here as activities A3 and A4. Briefing and programming usually belong to the main designer’s tasks. These tasks are mainly accomplished in activities A1 and A2. See also Section A for the client’s work.

The A-0 diagram is shown in Figure 10.
The activity (Figure 11) is divided into briefing, programming, global design and detail design. Activities during the construction stage and during the use and maintenance stage are not of importance here. Anyhow, delivery contracts are needed during the construction stage.

Briefing and programming get input from the client’s work (see Section A). The project brief and programme are complemented with architectural points of view. The purpose is to assist in defining the client’s need for more space. The output, the project brief is incorporated into the project brief of client’s work.

Most of the data are used as controls during the earlier stages. The design instructions, however, are checked in the activity A3 Make global design. Thus, they are shown as input to the activity.

Figure 11. Produce and manage architectural design data.
A1 DRAW UP BRIEF

The project brief (Figure 12) is a collection of basic information provided by the client concerning space requirements. The information consists of needs, requirements and possibilities. The subactivities are:

- analyse present situation,
- define requirements,
- study alternatives for space acquisition, and
- prepare programme decision.

The project brief may lead to drawing up of a programme if the brief indicates a need for more or less space.

Figure 12. Draw up brief.

A2 DRAW UP PROGRAMME

Programming (Figure 13) is usually carried out by the client. Thus, presentation of the programme is done either here in A26 (input to A26, dashed line) or in client’s work A26.
The design instruction (in Finnish suunnitteluohe) contains:

- project-specific instructions,
- standards,
- instructions concerning documents,
- quality class,
- special requirements for design
- usage of quality management systems, and
- decision procedures concerning design solutions, etc.

Figure 13. Draw up programme.

A3 MAKE GLOBAL DESIGN

Global design (Figure 14) produces design sufficient for a building permit. Activity A31, Start building design, belongs to the main designer's tasks. Architectural design begins in activity A32 where alternative basic solutions are designed. The proposed solution is based on a chosen basic alternative. The final scheme is elaborated in A34.
Different design solutions are approved by the client. These are shown as controls to activities.

Figure 14. Make global design.

A31 Start building design

Start building design involves the main designer's tasks (Figure 15). The design schedule is usually part of the activities of the client's work. The result of the activity is a checked design instruction which is used later in other activities.

In A316, the work of the design group starts. Checked design instructions are also assembled.
Figure 15. Start building design.

A32 Design basic alternatives

The activity starts with designing alternative designs for site usage (Figure 16). Usually 2-3 alternatives are designed. An approved site design is elaborated on further to design alternative basic solutions. These alternatives are compared and analyzed and an environmental analysis is carried out.

At the final stage, a decision is made on the alternative to be chosen for further design. The decision is made by the client (shown as a control) after presentation of the design solutions.
Figure 16. Design alternatives.

A33 Propose solution

The proposed solution (Figure 17) is elaborated on. Advance opinions about building permit and exceptional permits are acquired by sending an application to authorities. In practice, the layout drawing (in Finnish asemapiirustus) is sufficient for acquiring an advance opinion on the building permit.

The architectural and structural basic solutions are elaborated on. Input from other design disciplines is needed for comparison and compatibility checks.
Figure 17. Propose solution.

A34 Design schemes

The design schemes involves preparing and submitting an application for a building permit (Figure 18). The supervision (control) is part of the client's work (see activity A46). A general description of building is assembled. A report on the method of construction is used in later design stages.

A345 and A344 belong to the main designer's tasks. In A345, input is received from structural design. In practice (in 1995), the building permit may be received in approximately one month in a normal case.
Figure 18. Design schemes.

A4 MAKE DETAIL DESIGN

Make detail design (Figure 19) starts with an evaluation of the global design solutions. This evaluation is used as control for further design. Detailed design is elaborated on until sufficient accuracy is achieved for invitation to tender (in the traditional mode of operation). Activity A43 involves checking compatibility of design solutions of all design disciplines.

The contractor may require or suggest preliminary modifications and corrections. These are shown as controls to the activities. After additional tasks, the contractor is chosen and specialized detailed design may be done according to the contractor's specific instructions which are usually production and work methods.

Invitations to tender are assembled during additional tasks. It should be noted that additional tasks do not belong to normal architectural design unless an agreement is made to that effect. Additionally, preparation of the invitation to tender is actually made in the client's work. The main designer may be considered a consultant.
Detailed design includes activities such as design of facades, spaces (rooms etc.), basements, roof structures (Figure 20). Complementary structures include windows and doors. The courtyard is also designed. A general report on building methods is assembled.

Additional tasks involve assistance in preparing invitations to tender as well as analyzing tenders. Additional tasks also include design of movable pieces of furniture, landscape, guidance systems and signs.

Figure 19. Make detail design.
Figure 20. Make detail designs.

A5 DO DESIGN TASKS DURING CONSTRUCTION

Construction stage tasks consist mainly of supervision and inspections. The control of these activities is required by procurement contracts. At the final stage of this activity a taking over decision is made.

A6 DO TASKS DURING USE AND MAINTENANCE

Tasks during use and maintenance include warranty inspections. Checking the usage and the maintenance plan as well as planning the guidance and archiving of the design documents may also be needed. This activity ends when warranties are released.
LIST OF ACTIVITIES

<table>
<thead>
<tr>
<th>English</th>
<th>Finnish</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A0] Produce and manage architectural design data</td>
<td>[A0] Tuota ja hallitse ARK-suunnittelun tiedot</td>
</tr>
<tr>
<td>[A1] Draw up brief</td>
<td>[A1] Tee tarveterviys</td>
</tr>
<tr>
<td>[A14] Prepare programme decision</td>
<td>[A14] Valmistele hankepäätös</td>
</tr>
<tr>
<td>[A2] Draw up programme</td>
<td>[A2] Hankesuunnittelu</td>
</tr>
<tr>
<td>[A21] Define requirements set by activities and facility management</td>
<td>[A21] Laadi tilahjelma ja selvitä tilojen vaatimukset</td>
</tr>
<tr>
<td>[A22] Draw up space programme and clear up requirements</td>
<td>[A22] Määritä toiminnan ja kiinteistöpidon asettamat tavoitteet</td>
</tr>
<tr>
<td>[A23] Clear site and building permits</td>
<td>[A23] Selvitä rakennus paikka ja lupamenettelyt</td>
</tr>
<tr>
<td>[A26] Prepare investment decision</td>
<td>[A26] Valmistele investointipäätös</td>
</tr>
<tr>
<td>[A3] Make global design</td>
<td>[A3] Tee luonnossuunnittelu</td>
</tr>
<tr>
<td>[A31] Start building design</td>
<td>[A31] Käynnistä rakennussuunnittelu</td>
</tr>
<tr>
<td>[A311] Check design responsibilities</td>
<td>[A311] Tarkista suunnittelu ja vastuuarajat</td>
</tr>
<tr>
<td>[A312] Plan design schedule</td>
<td>[A312] Laadi suunnitteluaikataulu</td>
</tr>
<tr>
<td>[A313] Check input</td>
<td>[A313] Tarkista lähtötiedot</td>
</tr>
<tr>
<td>[A314] Specify special requirements and needs</td>
<td>[A314] Täsmennä kohteen erityisvaatimukset sekä tilaan ja käyttäjän tarpeet</td>
</tr>
<tr>
<td>[A315] Check design objectives</td>
<td>[A315] Tarkista suunnittelutavoitteet</td>
</tr>
<tr>
<td>[A316] Start design work</td>
<td>[A316] Käynnistää suunnitteluryhmän työ</td>
</tr>
<tr>
<td>[A32] Design alternatives</td>
<td>[A32] Laadi ratkaisuvaihtoehtoja</td>
</tr>
<tr>
<td>[A322] Design basic alternatives (mass alternatives)</td>
<td>[A322] Laadi vaihtoehtoisia periaateratkaisuja (massoittelut)</td>
</tr>
</tbody>
</table>
[A324] Analyse environmental effects
[A325] Present solution to client

[A33] Propose solution
[A331] Check input documents
[A332] Make preliminary layout drawing
[A333] Define principal architectural and technical solutions
[A334] Assemble general information of proposed solution
[A335] Get advance opinions and prepare applications for exceptional permits
[A336] Present solution for further design and coordinate design work

[A34] Design schemes
[A341] Estimate feedback from proposed solution, make layout drawing
[A342] Make scheme design
[A343] Review technical systems and check compatibility of designs
[A344] Prepare general description
[A345] Do tasks concerning building permits

[A346] Make decision concerning further design

[A4] Make detail design
[A41] Evaluate global design
[A42] Make detail designs
[A421] Design spaces and facades
[A422] Assist in design of external structures and foundations
[A423] Design frame and roof structures
[A424] Design complementary structures, surfaces, fittings and courtyard
[A425] Prepare a construction specification
[A43] Check compatibility of detail designs
[A44] Do additional tasks

[A41] Arvioi luonnonsuunnittelua
[A42] Tee suunnitelmatalous
[A421] Laadi tilojen ja julkisivujen toteutus suunnitelmat
[A422] Avusta perustusten ja ulkopuolisten rakenteiden suunnittelussa
[A423] Suunnittele runko- ja vesikatto-rakenteet
[A424] Suunnittele täydentävät ja pintarakenteet, sisustetut, kalusteet ja piha
[A425] Laadi rakennusselostus

[A43] Tarkasta toteutussuunnitelmien osien yhteensopivuus
[A44] Tee täydentävät tehtävät
[A441] Plan usage and maintenance
[A442] Draw up a plan for movable furniture and a guide for plants, landscaping, display of artwork, existing furniture and signs
[A443] Calculate bills of quantity
[A444] Check designs of building parts suppliers
[A445] Participate in preparation of competitive bidding
[A446] Participate in processing tenders

[A45] Design for production

[A5] Make design during construction

[A6] Do tasks during use and maintenance
LIST OF FLOWS

English

Advance opinions (AUTH)
Advance opinions, Exceptional permits
Analysis of environmental effects
Analysis of present situation
Analysis of present situation (inventory of activities and existing premises)
Application for advance opinions
Application for building permit
Approved cost objectives
Approved global designs (STR, BS, GEO, INT)
- Approved global designs form the basis for further design.
ARCH brief
- Architectural brief covers both architectural matters and other disciplines.
ARCH data
ARCH programme
- The programme of architectural design covers parts of other design disciplines if the architect is the main designer.

Finnish

Ennakkolausunnot (VIR)
Ennakkolausunnot, Poikkeusluvat
Ympäristövaikutusten analyysi
Olemassa olevan tilanteen analyysi
Nykylän analyysi (toimintojen inventointi, olemassolevien tilojen inventointi)
Ennakkolupahakemus
Rakennuslupahakemus
Hyväksytty kustannustavoitteet
Hyväksytty luonnossuunnitelmat (RAK, TATE, GEO, SIS).
- Hyväksytty luonnossuunnitelmat muodostavat pohjan jatkosuunnittelulle.
Tarveselvitys
- Arkkitehdin tarveselvityksessä on sekä arkkitehtoniset että muut asiat.
Arkitehtisuunnittelun tuottamat tiedot
ARK-hankesuunnitelma
- ARK-hankesuunnitelma sisältää arkitehtisuunnittelun tuottamat tiedot.

Architect
Basic solutions (masses)
Basic solutions for alternatives (mass alternatives)
Basic solutions of alternatives (mass alternatives)
Bills of quantities
Brief (CL)
Briefing of feedback
BS-designs Building services designs.
Building permit
Checked design instructions
Checked design objectives
Checked design responsibilities

Määrälaskelmat
Tarveselvitys (RAP)
Selvitys palautteesta
Talotekniikan suunnitelmat.
Rakennuslupa
Tarkistettu suunnitteluohe
Tarkistetut suunnittelutavoitteet
Tarkistetut suunnitteluväärät
Checked input
Checked input documents
Chosen site usage masses alternative
City plan (AUTH)
Complementary designs for production
Complementary structures, Surface structures, Fittings, Courtyard design
Complemented brief, Design instructions, Life cycle principle, Profitability requirement, Maintenance requirement
Component suppliers designs
Construction specification
Control (CL)
Controls during use and maintenance
Cost objective
Cost objectives, Activity costs, Financing plan, Tenancy estimate, Profitability analysis, Budget
Decision on basic solutions
Decision on design solution
Decision on proposed solution
Decision on site usage alternative
Description of compatibility
Description of construction method (STR)
Description of construction method, General description (architectural and structural solutions, principles of construction methods, calculations concerning permitted building volume, area calculations, space group based

Tarkistetut lähtötiedot
Tarkistetut lähtötieasiakirjat
Valittu tontinkäyttö ja- ja massoittelurat-kaisu.
Asemakaava (VIR)
Täydentävät tuotantosuunnitelmat
Täydentävät rakenteet, Pintarakenteet, Kalusteet, Pihasuunnitelma
Tarkennettu tarveselvitys, Suunnittelu-ohje, Elinkaarianalyysin periaate, Tuotto-tavoite, Ylläpitotavoite
Rakentamisosatoimittajien suunnitelmat
Rakennusselostus
Ohjaus (RAP)
Vastaanottotarkastukset
Kustannustavoite
Tavoiteustannukset, Toimintakustannus-selvitys, Rahoitussuunnitelma, Vuokralaskelma, Kannattavuusanalyysi, Budjetti laskelmineen
Päätös periaateratkaisusta
Päätös suunnittelurat-kaisusta.
Päätös ehdotuksesta
Päätös valittavasta tontinkäyttörat-kaisusta
Selvitys osien yhteensopivuudesta
Rakennustapaselostus (RAK)
Rakennustapaselostus, Luonnoksen yleis-selostet (ratkaisun arkkitehtoniset ja tekniset periaateratkaisut, rakennustavan pä-periaatteet, rakennusoikeus- ja pinta-alalaskelmat, vertailu tilaryhmittäin, kustannusten ja suunnittelutavoitteiden vertailu
comparison, comparison of cost and design objectives with requirements)

Design instructions
Design schedule
Design schedule (CL)
Designs and documents
Designs for production
Detail designs
Detailed design
Detailed design of spaces, Detailed design of facades
Economic trend analysis, Project schedule (total schedule), Mode of operation (design limits)
Estimated global design
Estimation of scope, efficiency and costs
Existing premises, Activities
External structures, Foundations
Feedback
Frame design, Roof design
General design (spaces, facades, repetitive units, fittings, layout drawing, elevations, essential sections)
General layout drawing, Environmental plan
General report on proposed solution (architectural and structural aspects, scope, efficiency, space group comparison, cost estimations vs. objectives)
Geotechnical analysis (GEO)

- Some preliminary geotechnical information is needed and analysed.

Global design
Invitations to tender
Layout drawing

puitteeseen)
Sunnitteluohjeet
Sunnitteluaikataulu
Sunnitteluaikataulu (RAP)
Asiakirjat ja suunnitelmat
Tuotantosuunnitelmat
Toteutussuunnitelmat
Toteutussuunnitelma.
Sahdanneselvitys, Hankkeen ajoitus (kokonaisaikataulu), Toteutustapa (suunnitte-lurajaliite)
Selvitys luonnossuunnitelmasta.
Laajuus-, tehokkuus- ja kustannustarkastelu
Olemassa olevat tilat, Toiminnot
Olemassa olevat rakenteet, Perustukset
Palaute
Runkorakenteet, Vesikattorakenteet
Yleissuunnitelma (tilat, julkisivut, toistuvat yksiköt, kalustettavuus, pohjapiirustukset, julkisivuipirustukset, oleelliset leikkaukset)
Asemapiirustus, Ympäristösuunnitelmia.
Ehdotuksen yleiselostane (ratkaisun arkki-tehto iniset ja tekniset periaateratkaisut, laajuus, tehokkuus, vertailu tilarymmit-täin, kustannusten ja suunnittelutavoitteiden vertailu puitteeseen)
Pohjatutkimukset (GEO)

- Alustavia pohjatutkimustietoja tarvitaan ja analysoidaan.
Luonnossuunnitelma
Tarjouspyynnöt
Asemapiirustus
Local planning (AUTH)
Location criteria, Site requirements

Maintenance requirements, Technical constructability, Juridical constructability, Local plan acceptability, Environmental effects

Need of client
Objectives of programme

Ownership (AUTH)
Preliminary designs, Environmental analysis of effects, Risk, sensitivity and trend analyses, Requirements for building permit, Brief

Preliminary lay out drawing
Preliminary schedule

Principal architectural solution, Principal technical solution

Procurement contracts
Programme (CL)

Proposed change to designs (CON)
Proposed solution

Resources
Review of global design

Schedule of detail design
Scheme decision

Site maps (AUTH), Geotechnical information (GEO), Drawings of existing building, Municipal engineering (AUTH), State of real estates (AUTH)

Site usage alternative
Space acquisition alternatives and comparisons, Location alternatives and comparisons (local plan acceptability, functional competence, juridical constructability, technical constructability, Effects of space

Kaavoitustilanne (VIR)
Sijaintikriteerit, Rakennuspaikan vaatimukset

Ylläpitovaatimukset, Tekninen rakennettavuus, Juridinen rakennettavuus, Kaavalinen kelpoisuus, Ympäristövaikutukset

Käyttäjän tarve
Hankesuunnitelman tavoitteet

Omistusoikeus (VIR)
Alustat suunnitelmat, Ympäristövaikutusanalyysi, Riski-, herkkyys- ja suhdan- neanalyysi, Hankkeen lupaedellytykset, Tarveselvitys

Alustava asemapiirros.
Alustava aikataulu

Arkitehtoinen periaateratkaisu, Tekninen periaateratkaisu

Hankintasopimukset
Hankesuunnitelma (RAP)

Urakoitijan muutosehdotus (URA)
Ehdotussuunnitelma

Resurssit
Selvitys luonnossuunnittelusta

Toteutussunnittelun aikataulu
Päätös luonnoksesta

Rakennuspaikan kartat (VIR), Pohjatutkimusaineisto (GEO), Olemassa olevien rakennusten piirustukset, Kunnallistekniikka (VIR), Kiinteistötekninen tilanne (VIR)

Tontinkäyttövaihtoehto
Tilanhankintavihtoehdot ja vertailu, Rakennuspaikkavaihtoehdot ja vertailu (kaavallinen kelpoisuus, toiminnallinen kelpoisuus, juridinen rakennettavuus, tekninen rakennettavuus), Tilanhankintatapa- pojen investointivaikutukset, Tilanhander-
acquisition alternatives on investment costs, Cost effects on maintenance costs of space acquisition alternatives, Cost effects of schedule alternatives, Condition analysis of old premises

Space programme (INT)

Space programme (room programme, diagrams, areas, volumes, special requirements, connectivity diagrams)

Special requirements, Special needs

STR detailed designs, BS detailed designs, GEO detailed designs

STR proposed solution, BS proposed solution, GEO proposed solution, INT proposed solution,

STR schemes, BS schemes, GEO schemes, INT schemes,

Strategic alternatives, Possibilities to intensify use of existing premises, Possibility to increase or eliminate activities, Dimensional requirements, Location criteria, Site requirements, Economical requirements, Scheduling goals

Structural designs (STR)

Supervision, Controls

Task lists

Technical systems and compatibility

Tender (CON)

Trend analysis, Project schedule (total schedule), Mode of operation (design limits)

Usage plan, Maintenance plan

User interviews

kintatapojen käyttökustannusvaikutukset, Aikatauluvaihtoehtojen kustannusvaikutukset, Vanhojen tilojen kuntoselvitys

Sisustussuunnittelun tilaohjelma (SIS)

Tilaohjelma (huonetilaohjelma, tilakaa-viot, pinta-alat, tilavuudet, erityisvaati-mukset, yhteyskaaviot)

Kohteen erityisvaatimukset, Tilaajan ja käyttäjän erityistarpeet

STR-toteutussuunnitelmat, TATE-toteutussuunnitelmat, GEO-toteutussuunnitelmat

RAK-ehdotus, TATE-ehdotus, GEO-ehdotus, SIS-ehdotus

RAK-luonnos, TATE-luonnos, GEO-luonnos, SIS-luonnos

Strategiavaihtoehdot, Olemassa olevien tilojen tehostamismahdollisuudet, Toimintojen laajentamis- tai karsimismahdollisuudet, Mitoitusperusteet, Sijaintikriteerit, Rakennuspaikan vaatimukset, Taloudelliset tavoitteet, Aikatavoitteet

Rakennesuunnitelmat (RAK)

Ohjaus, Valvonta

Tehtävälistat

Selvitys teknisistä järjestelmistä ja yhteensopivuudesta

Tarjous (URA)

Suhdanneanalyysi, Projektin kokonaisai- kataulu, Hankemuoto (urakkarajat)

Käyttösuunnitelma, Ylläpitosuunnitelma

Käyttäjähaastattelut
SECTION C:
STRUCTURAL DESIGN PROCESS MODEL

Table of contents

ACTIVITY MODEL ..83
 A-0 MODEL SCOPE ...83
 A0 PRODUCE AND MANAGE STRUCTURAL DESIGN DATA84
 A1 DRAW UP BRIEF ...84
 A2 DRAW UP PROGRAMME ..85
 A3 MAKE GLOBAL DESIGN ..86
 A31 Start building design ...87
 A32 Design alternatives ..87
 A33 Propose solution ...88
 A34 Design scheme ..89
 A4 MAKE DETAIL DESIGN ..90
 A5 DO DESIGN TASKS DURING CONSTRUCTION STAGE92
 A6 DO TASKS DURING USAGE AND MAINTENANCE ...92

LIST OF ACTIVITIES ...93

LIST OF FLOWS ...95
ACTIVITY MODEL

A-0 MODEL SCOPE

The structural design (Figure 22) process is divided into six different stages:
- briefing,
- programming,
- global design,
- detail design,
- design during construction, and
- design during takeover.

It should be noted that the main structural design work concerns global and detail design, presented as activities A3 and A4. Briefing and programming usually belong to the client's work (see Section A).

The A-0 activity diagram is shown in Figure 21.

Figure 21. Model scope.
A0 PRODUCE AND MANAGE STRUCTURAL DESIGN DATA

Structural design deals with loads and material strength. Structural design requires input from other design disciplines such as architectural design. These form the foundation of structural design.

The structural design procedure follows the same principle as other design disciplines, i.e., alternative solutions are worked into a solution proposed and then schemes are developed.

Figure 22. Produce and manage structural data.

A1 DRAW UP BRIEF

This task is usually not included in the structural engineer's design tasks (Figure 23). If needed, structural analyses of space acquisition alternatives, existing premises and spaces are carried out. Additionally, contributions to the client’s work are submitted when estimating costs of new building and renovation of old buildings. The brief is added to the brief on client's work (see Section A).
A2 DRAW UP PROGRAMME

This task is not usually included in the structural designer’s tasks (Figure 24). If assistance is needed, the structural engineer may define some technical requirements and cost requirements. Also, site constructability may be evaluated as well as a contribution to the client’s work added to evaluations of existing premises. The programme is added to the programme of client's work (see Section A).
Figure 24. Draw up programme.

A3 MAKE GLOBAL DESIGN

Global design (Figure 25) is divided into four subactivities. The first subactivity involves checking the design instructions which is done in conjunction with client's work (see section A) and main designer's tasks (see Section B).
Figure 25. Make global design.

A31 Start building design

The starting of building design does not belong to the structural engineer's normal design tasks. If needed, an agreement may be made concerning this activity.

The purpose of the activity is to check the design instructions and start building design. For more details, see activity A31 in the architectural design process model.

A32 Design alternatives

The purpose of designing basic alternatives (Figure 26) is to study the feasibility of architectural solutions complemented with structural designs. The first subactivity lays the foundation for the position of the building as well as needed substructures. Structural possibilities are based on architectural solutions.

Loads, fire classes and material alternatives are studied. Finally, a recommendation for further design is presented.

Input is needed from architectural design. It contains the alternative basic solutions.
A33 Propose solution

A more detailed solution which is called proposed solution is worked out in this activity (Figure 27). The proposed solution is based on the chosen architectural basic solution.

Building system alternatives are studied. Also, input from other design disciplines is taken into account. An important task is to check the compatibility of all designs such as building services and bearing structures. Building services installations require space and voids that have to be taken into account.

A decision on the basic structural system is made at the final stage.

Figure 26. Design alternatives.
Feasibility and durability of architectural alternatives, recommendation for further design, log of data.

Design structural alternatives (position, type and main dimensions of frame, stability, foundation, structural types).

Draw up documents for application for advance opinions.

Check compatibility of designs of bearing structures.

Compare designs of different disciplines.

Decision on basic structural system to be implemented.

Propose basic solution.

A331

A332

A333

A334

A335

A34 Design scheme

"Design schemes" (Figure 28) is used to provide sufficient accuracy for applying for a building permit. At this stage, designs are compared to design objectives and requirements that were set earlier, primarily as part of the client's work.

The structural solution is specified. It takes into account aspects of fire protection principles, environmental class, thermal class, water and moisture insulation. Stability analysis is carried out and main dimensions of main structural components are determined.

Compatibility with other designs is checked and seen as an input to activity A343 in the diagram. A final decision on which solution is to be further developed is made by the client.

A description of construction methods is documented. The document contains all the essential information such as site information (address, etc.), material specifications, areas, volumes, responsibilities of parties concerning design disciplines. Also, it contains information about the quality level. The document has parts that are common with the architectural design (seen as input to activity A345).
The additional tasks are not normally included in structural design activities though they may be performed according to a specific contract.

Figure 28. Design schemes.

A4 MAKE DETAIL DESIGN

Detail design (Figure 29) involves three subactivities. They are characterized as design for tenders, additional tasks and design for production. It should be noted that additional tasks do not automatically belong to the structural design unless an agreement to that effect is made. These tasks yield data for the invitation to tender.

Design for production is done when the contractor is chosen. The contractor may demand some changes to details. This is shown as a control to all activities, especially to activity A43. The contractor's products impose additional controls to activity A43.

In practice, the design schedule is usually tight which means that new ideas and design solutions are difficult to implement.
Figure 29. Make detail design.

In Figure 30, actual detailed design is shown. The first activity is not a design activity but defines the limitations of contract (foundation, frame, external wall and roof structures). An agreement on the required output documents is made. This activity is controlled by the mode of operation.

Structural calculations are done after which the initial activity the final dimensions are set. Some input is needed from building services design as installations require space and impose additional loads. Designing of substructures requires information from geotechnical design.

The last activity (A416) is to assemble a work specification.
Figure 30. Make detail designs.

A5 DO DESIGN TASKS DURING CONSTRUCTION STAGE

The tasks performed during construction stage consist mainly of supervision and inspections. The control for these activities is imposed by procurement contracts.

At the final stage of this activity a handover decision is made.

A6 DO TASKS DURING USAGE AND MAINTENANCE

The tasks during handover involve inspections during the warranty period. Also, additional tasks may include checking the usage and the maintenance plan as well as planning guidance and archiving of the design documents.

A decision on warranty release responsibilities is made.
LIST OF ACTIVITIES

English

[A0] Produce and manage structural data

[A1] Draw up brief
 [A11] Analyse alternatives for solving space needs
 [A12] Determine condition, reparations need and in-service life

[A13] Estimate new building and renovation costs

[A2] Draw up programme
 [A21] Define structural objectives

[A22] Take part in defining quality and cost objectives

[A23] Estimate in-service goal

[A24] Estimate constructability of site

[A25] Assist in selecting mode of operation

[A26] Estimate condition, bearing capacity and fire capacity of existing structures

[A3] Make global design
 [A31] Start building design

[A32] Design alternatives
 [A321] Define substructures and location on site
 [A322] Define structural possibilities

[A323] Define loads, fire classes and material alternatives

[A324] Decide structural possibilities for further design

[A325] Make recommendation for further design

[A33] Propose solution

[A331] Design structural alternatives

[A332] Draw up documents for application for advance opinions

Finnish

[A0] Tuota ja hallitse hankkeen RAK-suunnittelun tiedot

[A1] Tee tarveselvitys
 [A11] Analysoi tilantarpeen ratkaisuvaihtoehdot
 [A12] Selvitä olemassa olevien rakenteiden kunto, korjaustarve ja käyttöikä

[A13] Arvioi uudisrakennus- ja korjauskustannuksia

[A2] Hankesuunnittelu
 [A21] Määrittelee hankkeen rakennetekeniset tavoitteet
 [A22] Osallistuu laatutason ja kustannustavoitteiden määrittelyyn
 [A23] Arvioi käyttöökäytövaiote

[A24] Arvioi rakennuspaikan rakennettavuus
 [A25] Avusta toteutustavan valitsemisessa
 [A26] Arvioi vanhojen rakenteiden kunto, kantavuus ja palonkesto

[A3] Tee luonnossuunnittelu
 [A31] Käynnistää rakennussuunnittelu
 [A32] Laadi ratkaisuvaihtoehdot
 [A321] Määrittelee perustaminen ja sijainti tontilla
 [A322] Määrittelee rakennejärjestelmämahdollisuudet

[A323] Määrittelee kuormat, paloluokat ja materiaalivaihtoehdot
 [A324] Päätää tutkittavat rakennejärjestelmämahdollisuudet
 [A325] Tee suositus jatkosuunnittelusta

[A33] Laadi ehdotus

[A331] Suunnittelee rakennejärjestelmävaihtoehdot
 [A332] Laadi ennakkolausuntoja varten selvitykset
[A333] Check compatibility of BS designs and bearing structures

[A333] Tutki taloteknisten järjestelmien ja kantavien rakenteiden yhteeensopivuus

[A334] Compare designs of different disciplines

[A334] Vertaile eri toimialojen suunnitelmia

[A335] Propose basic solution

[A335] Tee ehdotus perusratkaisusta

[A34] Design schemes

[A34] Laadi luonnos

[A341] Specify chosen structural solution

[A341] Täsmennä valittu rakennejärjestelmä

[A342] Provide descriptions of structures and substructures for authorities

[A342] Tee rakenteiden ja perustusten selvitys viranomaisia varten

[A343] Compare designs of different disciplines

[A343] Vertaile eri toimialojen suunnitelmia

[A344] Do additional tasks

[A344] Tee täydentävät tehtävät

[A345] Provide description of construction

[A345] Laadi rakennustapaselostus

[A4] Make detail design

[A4] Tee toteutussuunnittelu

[A41] Make detail designs

[A41] Tee toteutussuunnitelmat

[A411] Make output plan

[A411] Laadi tulostussuunnitelma

[A412] Do structural calculations

[A412] Laadi rakennelaskelmat

[A413] Design foundations and frame structures

[A413] Suunnittele perustukset ja runkorakenteet

[A414] Design external wall and roof structures

[A414] Suunnittele ulkoseinä- ja vesikattorakenteet

[A415] Design complementary structures

[A415] Suunnittele täydentävät rakenteet

[A416] Make work specification

[A416] Laadi työselostus

[A42] Do additional tasks

[A42] Tee täydentävät tehtävät

[A43] Make designs for production

[A43] Laadi tuotantosuunnitelma

[A4111] Make output plan

[A4111] Laadi tulostussuunnitelma

[A412] Do structural calculations

[A412] Laadi rakennelaskelmat

[A413] Design foundations and frame structures

[A413] Suunnittele perustukset ja runkorakenteet

[A414] Design external wall and roof structures

[A414] Suunnittele ulkoseinä- ja vesikattorakenteet

[A415] Design complementary structures

[A415] Suunnittele täydentävät rakenteet

[A416] Make work specification

[A416] Laadi työselostus

[A42] Do additional tasks

[A42] Tee täydentävät tehtävät

[A43] Make designs for production

[A43] Laadi tuotantosuunnitelma

[A5] Do tasks during construction stage

[A5] Tee rakennusaikaiset tehtävät

[A5] Do tasks during usage and maintenance

[A6] Tee käyttöön ja ylläpitoon liittyvät tehtävät
LIST OF FLOWS

English

Approved cost objectives
Approved global design (ARCH, BS, GEO, INT)
Approved loads, Approved fire classes
ARCH proposed solution, BS proposed solution, GEO proposed solution, INT proposed solution
ARCH schemes, BS schemes, GEO schemes, INT schemes
Assistance for selection of mode of operation
Basic solutions (masses) (ARCH)
Brief (CL)
BS proposed solution
Building permit
Checked design instructions
Chosen products of contractors
Chosen proposed solution (ARCH)
Comparison
Comparisons (foundation, applicability to production, modifiability, extendability, effects of BS installations, in-service life, physical properties, costs)
Compatibility of designs of building services and bearing structures
Complementary designs
Condition, bearing capacity, and fire capacity of existing structures
Condition, reparation need and in-service life of existing structures
Constructability of site

Finnish

Hyväksytyt kustannustavoitteet
Hyväksytyt luonnokset (ARK, TATE, GEO, SIS)
Hyväksytyt kuormat ja paloluokat
ARK-ehdotus, TATE-ehdotus, GEO-ehdotus, SIS-ehdotus
ARK-luonnos, TATE-luonnos, GEO-luonnos, SIS-luonnos
Toteutustapaan liittyvät selvitykset
Vaihtoehtojen periaateratkaisut (massat) (ARK)
Tarveselvitys (RAP)
TATE-ehdotus
Rakennuslupa
Tarkistetut suunnitteluohjeet
Urakoitsijoiden valitut tuotteet
Valittu arkkitehdin ehdotus (ARK)
Vertailu
Vertailut (perustukset, soveltuvuus tuotantoon, muunneltavuus / laajennettavuus, TATE-järjestelmien vaikutus, käyttöökalu, selvitys, rakennusfysiikaiden ominaisuksien vertailu, kustannusvertailut)
Selvitys talotentisten järjestelmien ja kantavien rakenteiden yhteensovivuudesta
Täydentävät suunnitelmat
Vanhojen rakenteiden kunto, kantavuus ja palonkesto
Olemassa olevien rakenteiden kunto, korjaustarve ja käyttöikä
Rakennuspaikan rakennettavuus
<table>
<thead>
<tr>
<th>English</th>
<th>Finnish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls, Inspections, etc.</td>
<td>Tarkastukset, Katselmukset</td>
</tr>
<tr>
<td>Cost objectives, Quality objectives</td>
<td>Rakennetekniset kustannus- ja laatu- tavoitteet</td>
</tr>
<tr>
<td>Decision on approved loads and fire classes</td>
<td>Päätös hyväksytyistä kuormista ja paloluokista</td>
</tr>
<tr>
<td>Decision on basic structural system to be implemented</td>
<td>Päätös toteutettavasta perusrakennejärjestelmästä</td>
</tr>
<tr>
<td>Decision on scheme (CL)</td>
<td>Päätös luonnoksesta (RAP)</td>
</tr>
<tr>
<td>Description of construction method</td>
<td>Rakennustapaselostus</td>
</tr>
<tr>
<td>Description of construction method (ARCH)</td>
<td>Rakennustapaselostus (ARK)</td>
</tr>
<tr>
<td>Description of substructures, Description of structures</td>
<td>Selvitys perustuksista, Selvitys rakenteista</td>
</tr>
<tr>
<td>Design instructions</td>
<td>Suunnitteluhjeet</td>
</tr>
<tr>
<td>Designs for production</td>
<td>Tuotantosuunnitelmat</td>
</tr>
<tr>
<td>Designs for production (ARCH)</td>
<td>Tuotantosuunnitelmat (ARK)</td>
</tr>
<tr>
<td>Detail designs</td>
<td>Toteutussuunnitelmat</td>
</tr>
<tr>
<td>Detail designs of complementary structures</td>
<td>Täydentävien rakenteiden toteutussuunnitelmat</td>
</tr>
<tr>
<td>Detail designs of external wall structures, Detail designs of roof structures</td>
<td>Ulkoseinä rakenteiden toteutussuunnitelmat, Vesikaton toteutussuunnitelmat</td>
</tr>
<tr>
<td>Detail designs of foundations, Detail designs of frame structures</td>
<td>Perustusten toteutussuunnitelmat, Runkorakenteiden toteutussuunnitelmat</td>
</tr>
<tr>
<td>Documents for advance opinions</td>
<td>Ennakko lausuntoselvitykset</td>
</tr>
<tr>
<td>Estimate of new building costs, Estimate of renovation costs</td>
<td>Arvio uudisrakennus ja korjauskustannuksista</td>
</tr>
<tr>
<td>Existing structures</td>
<td>Olemassa olevat rakenteet</td>
</tr>
<tr>
<td>Feasibility and durability of architectural alternatives, Recommendation for further design, Input data</td>
<td>Selvitys arkkitehtoisten vaihtoehtojen toteutettavuudesta ja kestävyydestä, Suositus jatkosuunnittelusta, Lähtötiedot</td>
</tr>
<tr>
<td>Geotechnical information (GEO)</td>
<td>Pohjatutkimustiedot (GEO)</td>
</tr>
<tr>
<td>Global design</td>
<td>Luonnos</td>
</tr>
<tr>
<td>Global designs</td>
<td>Luonnossuunnitelmat</td>
</tr>
<tr>
<td>In-service goal</td>
<td>Käyttöikä tavoite</td>
</tr>
<tr>
<td>Loads, Fire classes, Material alternatives</td>
<td>Kuormat, Paloluokat, Materiaalivaihtoehdot</td>
</tr>
</tbody>
</table>
Maintenance plan, Definitions for design and build, Quantities of building parts, 3D-pictures, External structures, In-service description of building parts

Mode of operation (CL) (organisation of design and construction)

Position, type and dimensions of frame structures, Fire protection principles for frame structures, Substructure and base floor solutions, Essential structural joints, Structural solutions for acoustic, thermal, water and moisture insulation, Loads, Environmental class, Fire class, Stability analysis, Dimensions of main structural components, U-values

Positions of BS installations, voids and loads

Preliminary geotechnical analyses (GEO)

Preliminary schemes (ARCH) (general design)

Programme (CL)

Proposed change to designs (CON)

Proposed contract limitations (foundations / earth construction / earth to be stabilized, frame and external wall structures and roof structures) Output plan (drawing schedule and method, documents and description to be prepared)

Proposed solution

Resources

Schedule for detail design

Stability calculations (frame stiffening principle, calculation method, calculation

Ylläpitosuunnitelma, Tuoteosakauppan liittyvät määrittelyt, Rakennusosien määrität, 3D-kuvat, Ulkoalueella olevat rakenteet, Rakennusosien käyttööksiselvitys

Urakkamuoto (RAP) (rakentamisen ja suunnittelun organisointi)

Runkorakenteiden sijainti, tyyppi ja dimensiot, Runkorakenteiden palosuojauskseen periaate, Perustus- ja alapohjaratkaisut, Oleelliset rakenteiden liitokset, Rakenteiden äänen-, lämmön-, veden- ja kosteusdeneristysratkaisut, Kuormitukset, Ympäristöluokka, Palolukka, Stabileettianalyysi, Päärakennusosien mitat, K-arvot

TATE-installaatioiden sijoitus, vaadittavat tilavaraukset ja kuormitus

Alustavat pohjatutkimustulokset (GEO)

Alustavat arkkitehdin luonnokset (ARK) (yleissuunnitelma)

Hankesuunnitelma (RAP)

Muutosehdotus (URA)

Urakkarajaehdotus (perustukset / maarakennus / pohjanvahvistus, runko- ja ulkoseinäraakenteet sekä vesikattorakenteet), Tulostussuunnitelma (piirustusluetteloto, tulostustavan määrittely, laadittavat selostukset ja asiakirjat)

Ehdotus

Resurssit

Toteutussuunnittelun aikataulu

Stabileettilaskelmat (rakennusrungon jäykistysperiaate, laskentamenetelmät,
Output) Dimensions of structural components (dimensioning methods, standards, calculations) Dimensions of essential joints, Fire-technical dimensioning (fire classes, fire-technical calculations)

STR brief
STR programme
Structural alternatives for space need
Structural data
Structural designer
Structural frame alternatives (position, type and main dimensions of frame, stability, foundation, structural types)
Structural needs
Structural objectives
Structural possibilities
Structural possibilities in further design

Substructures (GEO)
Substructures and location on site
Warranty inspections, etc.
Work methods of contractors
Work specification

laskelmatuliosteet), Rakeneosien mitoitus (mitoitusmenetelmät, normit, laskelmat), Oleellisten liitosdetaljien mitoitus, Palotekninen mitoitus (paloluokat, palotekniset mitoituslaskelmat)

Rakennesuunnittelun tarveselvitys
Rakennesuunnittelun hankesuunnitelma
Tilantarpeen rakenteelliset selvitykset
Rakennesuunnittelun tiedot
Rakennesuunnittelija
Rakenejärjestelmävaihtoehdot (runkokerkkorakenteiden sijainti, tyypit ja päädimensiöt, stabiliteettiselvitys, perustusvaihtoehdot, rakennetyypit)
Rakenteelliset tarpeet
Rakennetekniset tavoitteet
Rakenejärjestelmämahdollisuudet
Tutkittavat rakenejärjestelmämahdollisuudet
Perustamistapaselvitys (GEO)
Perustaminen ja sijainti tontilla
Takuuajan tarkastukset
Urakoitsijoiden työmenetelmät
Työselostus
SECTION D:
BUILDING SERVICES DESIGN PROCESS MODEL

Table of contents

ACTIVITY MODEL ..101
A-0 MODEL SCOPE ...101
A0 PRODUCE AND MANAGE BUILDING SERVICES DESIGN DATA 102
A1 DRAW UP BRIEF..103
A2 DRAW UP PROGRAMME ..103
A3 MAKE GLOBAL DESIGN ..104
 A31 Make scheme design ...105
A4 MAKE DETAIL DESIGN ..107
 A41 Make detailed design ...109
A5 DO DESIGN TASKS DURING CONSTRUCTION110
A6 DO TASKS DURING USAGE AND MAINTENANCE110

LIST OF ACTIVITIES...111

LIST OF FLOWS ..113
ACTIVITY MODEL

A-0 MODEL SCOPE

The presented building services design process model is based on a task list (RT 10-10579). The model’s main function is to coordinate and supervise the design work of all building services design subdisciplines (structural, HVAC, etc.).

The process is divided into six different stages, i.e., briefing, programming, global design, detail design and design during construction and use and maintenance stages.

It should be noted that the main building services design work concerns global and detail design, presented here as activities A3 and A4. Also, briefing and programming usually belong to the main designer’s tasks (see Section B) or the client’s work (see Section A).

The A-0 activity diagram is shown in Figure 31.

Figure 31. Model scope.
A0 PRODUCE AND MANAGE BUILDING SERVICES DESIGN DATA

The activity (Figure 32) is divided into briefing, programming, global design and detail design. Activities during the construction stage as well as handover are not of importance here. Anyhow, delivery contracts are needed during the construction stage.

Building services include building automation, electric, HVAC and telecommunications design. The presented process model takes into account all these disciplines being a coordinated model. It indicates a need for a main designer for building services.

Briefing and programming usually belong to the client’s work. Here, they get input from the client’s work. The project brief and programme are completed from building services point of view.

The purpose is to assist in defining the client’s need for more space. The output, a project brief, will be part of the whole project brief that is done in the client’s work (Section A).

Figure 32. Produce and manage building services design data.
A1 DRAW UP BRIEF

The project brief (Figure 33) is a collection of basic information from the client concerning space requirements. The information consists of needs, requirements and possibilities.

The project brief may lead to drawing up of a programme if the brief indicates a need for more or less space. The brief here is focused on the building services points of view.

Figure 33. Draw up brief.

A2 DRAW UP PROGRAMME

Programming (Figure 34) is usually carried out as client’s work (see Section A). The requirements concerning building services are

- building service quality level,
- indoor climate, thermal loads, usage period
- natural light, illumination,
- data exchange, safety,
- method for uninterrupted use
• special loads, disturbance,
• appearance, and
• multi-purpose use, modifications.

The programme here is included in the programme of the client’s work (Section A).

Figure 34. Draw up programme.

A3 MAKE GLOBAL DESIGN

Global design (Figure 35) starts with checking and complementing the programme. The programme is used as input. Architectural design solutions are used as input for establishing relevant building services design.

The global design of different building services disciplines takes place in subactivity A35. In A36, a comparison of different disciplines is done. The final result is the global design of all building services.

General design includes following:
• check input,
• agreement on data exchange formats and methods,
• specification of external connections,
• specification of technical space needs,
• position and dimensioning of main equipment,
• main wireroutings,
• type rooms,
• integration possibilities,
• specification of contract limits and procurement, and
• essential voids and holes.

Figure 35. Make global design.

A31 Make scheme design

Schemes (Figure 36) are designed for all disciplines. These activities are usually done simultaneously. The design schedule is usually as part of the client's work. The result of the activity is checked design instructions which are used later in other activities.

HVAC-design includes:
• service areas,
• design HVAC-systems,
• energy measurements, and
• heating and cooling capacities.

Building automation design consists of the following:
• structure of system,
• extension and functions of system, and
• subdistribution equipment.

Telecommunication includes:
• design functions of systems,
• field experiments,
• design usage of special rooms,
• encoding of safety data and distribution, and
• disturbance and protection principles.

All these subactivities are done by the corresponding designers, for instance, the HVAC design is done by the HVAC designer. These individual designers are not shown in Figure 36.
Electrical design includes:
• space (room) and isolation classes,
• lighting solutions,
• grouping areas,
• capacity, compensation and filtering requirements,
• secured and undisturbed usage,
• energy measurements,
• control systems and requirements, and
• disturbance and protection principles.

A4 MAKE DETAIL DESIGN

Procurements are decided in detail design (Figure 37). Documents are prepared for procurement. All these disciplines have some common tasks which are presented as one activity. The compatibility of all designs is checked on upper level A43.

General design involves the following:
• check input data,
• specify data exchange,
• design systems and equipment in detail,
• functional descriptions,
• technical and material requirements,
• equipment identification,
• integration of systems,
• contract limits, and
• voids and holes.
Figure 37. Make detailed design.
Figure 38. Prepare detail design documents.

A41 Make detailed design

Detail design is accomplished for all BS disciplines (Figure 38). The detail design includes following parts of each discipline.

HVAC includes:
• calculation of heating and cooling need of rooms,
• define and design room equipment,
• pipelines, control, adjustment, and
• define and design main distribution equipment.

Building automation includes:
• process control, methods, usage principles,
• adjustment functions,
• electrical and program interlocking,
• monitoring and control systems,
• software requirements,
• requirements on control, distribution, and field equipments,
• remote connections, reporting requirements, and
• user interfaces.
Telecommunication includes:
- specify point-positions,
- damping calculation, circuit values,
- wire-routings,
- check external disturbance and protection,
- protection against sabotage, and
- distribution central, switch cabinets.

Electrical design includes:
- lighting-fixture specification,
- wire-routings,
- distribution systems and switchboards,
- service areas,
- control systems and solutions, and
- final electrical point-position.

A5 DO DESIGN TASKS DURING CONSTRUCTION

These tasks do not usually belong to building services design. If needed the following tasks may be done:
- usage and maintenance plan,
- checking the contractor's designs
- general supervision concerning building services
- montage and equipment inspections, and
- tests and coordination
A taking over inspection could also be included in additional tasks.

A6 DO TASKS DURING USAGE AND MAINTENANCE

Most activities deal with inspection and checking of the functions of building services installations. Some general supervision may be imposed. The activities continue until the warranty period has elapsed.
LIST OF ACTIVITIES

<table>
<thead>
<tr>
<th>English</th>
<th>Finnish</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A0] Produce and manage building service design data</td>
<td>[A0] Tuota ja hallitse TATE-suunnittelun tiedot</td>
</tr>
<tr>
<td>[A1] Draw up brief</td>
<td>[A1] Tee tarveselvitys</td>
</tr>
<tr>
<td>[A14] Prepare programme decision</td>
<td>[A14] Valmistele hankepäättös</td>
</tr>
<tr>
<td>[A2] Make programme</td>
<td>[A2] Tee hankesuunnittelu</td>
</tr>
<tr>
<td>[A21] Check and complement input and compare and demonstrate BS</td>
<td>[A21] Tarkista ja täydennä lähtötiedot sekä vertaile ja havainnollista</td>
</tr>
<tr>
<td>alternatives</td>
<td>taloteknisiiä vaihtoehdoja</td>
</tr>
<tr>
<td>[A22] Clear building site concerning BS</td>
<td>[A22] Selvitä rakennuspaikka taloteknisesti</td>
</tr>
<tr>
<td>[A23] Take part in defining schedule and mode of operation</td>
<td>[A23] Osallistu hankkeen ajoituksen ja toteutustavan suunnittelun</td>
</tr>
<tr>
<td>[A3] Make global design</td>
<td>[A3] Tee luonnossuunnittelu</td>
</tr>
<tr>
<td>[A31] Start global design</td>
<td>[A31] Käynnistä luonnossuunnittelu</td>
</tr>
<tr>
<td>[A32] Compare site usage and masses as regards BS and make BS</td>
<td>[A32] Vertaile tontinkäyttö- ja massoitteluvaihtoja talotekniikan osalta</td>
</tr>
<tr>
<td>proposed solutions</td>
<td>sekä laadi talotekniset ehdotukset</td>
</tr>
<tr>
<td>[A33] Compare design solutions of all design disciplines and costs of</td>
<td>[A33] Vertaile eri suunnittelualojen ratkaisuja ja taloteknisten ratkaisujen</td>
</tr>
<tr>
<td>BS solutions</td>
<td>kustannuksia</td>
</tr>
<tr>
<td>[A34] Choose and get approvals for BS</td>
<td>[A34] Valitse ja hyväksytä toteutettavat talotekniset ratkaisut sekä vertaile ja yhteensovita eri suunnittelualojen ratkaisut</td>
</tr>
<tr>
<td>design solutions and compare and integrate design solutions of BS</td>
<td></td>
</tr>
<tr>
<td>disciplines</td>
<td></td>
</tr>
<tr>
<td>[A35] Make scheme design</td>
<td></td>
</tr>
<tr>
<td>[A351] Make BS-general design</td>
<td>[A351] Tee TATE-yleissuunnittelu</td>
</tr>
<tr>
<td>[A352] Make HVAC design</td>
<td>[A352] Tee LVI-suunnittelu</td>
</tr>
<tr>
<td>[A353] Make AUT design</td>
<td>[A353] Tee RAU-suunnittelu</td>
</tr>
<tr>
<td>[A354] Make TEL design</td>
<td>[A354] Tee TEL-suunnittelu</td>
</tr>
<tr>
<td>[A355] Make ELE design</td>
<td>[A355] Tee SÄH-suunnittelu</td>
</tr>
</tbody>
</table>
[A36] Compare and integrate global designs, check cost and maintenance objectives and get approvals for global designs

[A4] Make detailed design
[A41] Specify input data
[A42] Prepare detail design documents
[A421] Make BS general design
[A422] Make HVAC design
[A423] Make AUT design
[A424] Make TEL design
[A425] Make ELE design
[A43] Compare and integrate detailed designs of all disciplines
[A44] Get approvals for detailed design

[A4] Tee toteutussuunnittelu
[A41] Tarkenna toteutussuunnittelun lähtötiedot
[A42] Laadi toteutussuunnitelma-asiakirjat
[A421] Tee TATE-yleissuunnittelu
[A422] Tee LVI-suunnittelu
[A423] Tee RAU-suunnittelu
[A424] Tee TEL-suunnittelu
[A425] Tee SÄH-suunnittelu
[A43] Vertaile ja yhteensovita eri suunnittelualojen toteutussuunnitelmat
[A44] Hyväksy toteutussuunnitelma

[A5] Manage tasks during construction stage

[A5] Tee rakentamisvaiheen tehtävät

[A6] Do tasks for usage and maintenance

[A6] Tee käyttöön ja ylläpitoon liittyvät tehtävät
LIST OF FLOWS

English

Alternatives (BS point of view)
ARCH proposed solution, STR proposed solution, GEO proposed solution, INT proposed solution
ARCH scheme, STR scheme, GEO scheme, INT scheme
AUT detailed design
AUT general design
AUT schemes
Basic alternatives (ARCH)
Basic solution (masses) (ARCH)
• Basic solution is received from the architect.
BS brief
BS design data
BS design objectives
BS designer
• Building services designers are HVAC, building automation, telecommunications and electrical designers.
BS detailed designs
BS general design
BS global designs
BS programme
BS quality objectives, BS design alternatives, Space needs, Points concerning positioning of spaces, Structural safety objectives, Structural disturbance protection objectives, Drift material consumption (thermal, water, electricity), Investment costs, Maintenance costs
BS survey of existing premises

Finnish

Vaihtoehdot TATE-näkökohdasta
ARK-ehdotus, RAK-ehdotus, GEO-ehdotus, SIS-ehdotus
ARK-luonnos, RAK-luonnos, GEO-luonnos, SIS-luonnos
RAU-toteutussuunnitelmat
RAU-yleisuunnitelma
RAU-luonnossuunnitelmat
Vaihtoehtojen periaateratkaisut (ARK)
Periaateratkaisu (massoittelu) (ARK)
• Periaateratkaisu saadaan arkkitehtiltä.
TATE-tarveselvitys
TATE-suunnittelutiedot
Talotekniset suunnittelutavoitteet
TATE-suunnittelija
• Talotekniset suunnittelijat ovat LVI-, rakennusautomaatio, tele- ja sähkösuunnittelijat.
TATE-toteutussuunnitelmat
TATE-yleissuunnitelma
TATE-luonnossuunnitelma
TATE-hankesuunnitelma
Talotekniset laatutasotavoitteet, Talotekniset ratkaisuvaihtoehdot, Tilantarpeet ja tilojen sijoittelun liittyvät näkökohdat, Rakenteelliset turvallisuus- ja häiriösojanäkökohdat, Kiinteistönhoidon menekki Käyttöainemenekki (lämpö, vesi, sähkö), Investointi- ja ylläpitokustannukset

Olemassa olevien tilojen talotekninen kartoitus

113
Building services needs

CAD instructions (software and versions, designer specified instructions for CAD drawings, data exchange, output, databases, utilization of design information in maintenance)

Checked input, Additions, Demonstration of alternatives

Comment on mode of operation, Comment on schedule, Checks, Additions

Comment, Checks, Additions for others, BS schemes

Comments, Additions, Checkings

Comparisons of solutions, BS cost comparisons (investment costs, maintenance costs, energy consumption, reciprocal cost effects)

Connections to external networks and systems, Easements and servitudes on site, Environmental conditions

Contract responsibilities, Limitation liability

Control, Takeover inspection

Controlled construction

Decision on solution

Decision on scheme designs

Description of alternatives, Integration possibilities, Modification possibilities, Connections to existing systems, Functionality of special spaces

Design instructions (CL)

Detailed designs

ELE detailed design

ELE general design

ELE schemes

Existing premises

Talotekniset tarpeet

CAD-suunnitteluluohje (käytettävät atk-ohjelmat ja versiot, suunnittelijakohtaiset CAD-piitämisohjeet, tiedosiirto, tulostukset, tietokantojen käyttö, suunnittelutiedon hyödyntäminen ylläpidossa)

Tarkistetut lähtötiedot, Täydennykset, Vaihtoehtojen esitys

Toteutustapakannnotto, Tarkistukset Täydennykset

Kannanotto, Tarkistukset, Täydennykset muille, TATE-luonnokset

Kannanotto, Tarkistukset, Täydennykset

Ratkaisujen vertailu TATE-kustannusten vertailu (investointi- ja ylläpitokustannukset, energiankulutus, järjestelmien keskinäiset kustannusvaikutukset)

Liittymät ulkopuolisten verkstoihin, Tontilla olevat rasiotteet, Ympäristöolosuhteet

Sopimusrajat, Urakkarajat

Takuutarkastukset, vastaanottotarkistus

Valvottu rakentaminen

Päätös suunnitteluratkaisusta

Päätös luonnossuunnittelmasta

Vaihtoehtojen kuvaus, Järjestelmien integrointimahdollisuudet, Järjestelmien muunneltavuus, Liittyminen olemassa oleviin järjestelmiin, Erikoistilojen toimivuus

Suunnitteluluohje (RAP)

Toteutussuunnitelmat

SÄH-toteutussuunnitelma

SÄH-yleissuunnitelma

SÄH-luonnossuunnitelmat

Olemassa olevat tilat
Feasible BS solutions, Comparisons	Toteutettavat talotekniset ratkaisut, Vertailut
Focused input	Tarkennetut lähtötiedot
General design (ARCH)	Yleissuunnitelma (ARK)
Global designs	Luonnossuunnitelmat
HVAC designer, AUT designer, TEL designer, ELE designer	LVI-suunnittelija, RAU-suunnittelija, TEL-suunnittelija, SÄH-suunnittelija
HVAC detailed design	LVI-toteutussuunnitelmat
HVAC general design	LVI-yleissuunnitelma
HVAC schemes	LVI-luonnossuunnitelmat
Identification system	Laitetunnusjärjestelmä
Integrated detailed designs, Comparisons	Yhteensovitetut toteutussuunnitelmat, Vertailut
Integrated objectives, Comparisons	Yhteensovitetut tavoitteet, Vertailut
Investment decision	Investointipäätös
Layout drawing	Asemapiirustus
Layout drawing (ARCH)	Asemapiirustus (ARK)
Preliminary layout drawing (ARCH)	Alustava asemapiirustus (ARK)
Programme (CL)	Hankesuunnitelma (RAP)
Project brief (CL)	Tarveselvitys (RAP)
Regulations concerning building services	Taloteknisiä järjestelmiä koskevat määräykset ja ohjeet
Resources	Resurssit
Schedule proposal (CL), Proposal on mode of operation (CL)	Hankkeen ajoitusehdotus (RAP), Toteutustapaehdotus (RAP)
Site alternatives (ARCH)	Tontikäyttövaihtoehdot (ARK)
Space programme(ARK)	Tilaohjelma (ARK)
Specified input	Tarkennetut lähtötiedot
Technical layout drawing, BS constructability, Environmental effects on BS	Tekninen asemapiirustus, Talotekninen rakennettavuus, Ympäristön vaikutukset talotekniikkaan
TEL detailed design	TEL-toteutussuunnitelmat
TEL general design	TEL-yleissuunnitelma
TEL schemes	TEL-luonnossuunnitelmat
SECTION E:
GEOTECHNICAL DESIGN PROCESS MODEL

Table of contents

ACTIVITY MODEL ..119
 A-0 MODEL SCOPE ..119
 A0 PRODUCE AND MANAGE GEOTECHNICAL DESIGN DATA119
 A1 DRAW UP BRIEF ...120
 A2 DRAW UP PROGRAMME ..121
 A3 MAKE GLOBAL DESIGN ..121
 A4 MAKE DETAIL DESIGN ...123
 A5 MAKE TASKS DURING CONSTRUCTION STAGE124
 A6 DO TASKS DURING USE AND MAINTENANCE124

LIST OF ACTIVITIES ..125

LIST OF FLOWS ..126
ACTIVITY MODEL

A-0 MODEL SCOPE

The process is divided into six different stages. These are briefing, programming, global design, detail design and design during construction and use and maintenance stages. The A-0 diagram is shown in Figure 39.

Briefing and programming usually belong to the client’s work (see Section A).

Figure 39. Model scope.

A0 PRODUCE AND MANAGE GEOTECHNICAL DESIGN DATA

The presented design process model is shown in Figure 40.
Figure 40. Produce and manage geotechnical design data.

In briefing and programming, needs are surveyed from the geotechnical point of view. The results of briefing and programming are gathered into a common project brief and programme which are synthesized in the client's work. In geotechnical design briefing and programming are considered as complementary to the client's work (see Section A).

A1 DRAW UP BRIEF

Briefing is not usually included in the geotechnical design tasks. If needed, an analysis of existing premises is carried out. Design requirements are determined. Space acquisition alternatives may also be assessed. Finally, a decision on the programme is made.

Space acquisition alternatives concern new building, renting or renovation.
A2 DRAW UP PROGRAMME

The geotechnical programme (Figure 41) complements the programme of the client's work. The input data is checked and completed. The requirements concerning geotechnical matters are included.

Design objectives are defined and existing geotechnical information are assembled into a document.

Figure 41. Draw up programme.

A3 MAKE GLOBAL DESIGN

Global design (Figure 42) starts with checking and complementing of the programme. The programme is used as input for this activity. Alternatives, a proposed solution and, finally, schemes are prepared.

Building design is started in conjunction with other design disciplines. The first actual geotechnical design task is to design alternatives which means that existing geotechnical information is gathered and a programme for additional experiments is agreed on. Also, descriptions of foundation types and methods are assembled.
The proposing of a solution involves more cooperation with other designers. A solution proposed from architectural design is needed as a control. The proposed solution includes

- foundation,
- underground spaces,
- excavations,
- drainage,
- subsoil structures,
- foundation, drainage and structure of yard, and
- underdrains.

The proposed solution takes into account aspects concerning ground water, environment, foundations to neighbouring buildings, further usage of excavated material, time and radiation.

Figure 42. Make global design.

A4 MAKE DETAIL DESIGN

Detail design (Figure 43) is divided into three activities. Approved global designs of other design disciplines are used as controls. Geotechnical schemes shall also be approved earlier. The detailed designs do include
• output and documentation plan,
• analyzed experiments and measurements,
• designs for foundations of building,
• foundation of yard,
• subsoil drainage plan,
• plat of bottom and tubing plan,
• foundation structures plan, and
• excavation and bottom stoping plan.

A sufficient number of drawings and other documents are provided.

Figure 43. Make detail design.
A5 MAKE TASKS DURING CONSTRUCTION STAGE

Tasks during the construction stage include inspections and overall supervision. The activity ends at the taking over decision.

A6 DO TASKS DURING USE AND MAINTENANCE

This activity contains only additional tasks that are done during the initial phases of the use and maintenance. These activities are normally deal with measurements of ground water, subsidence and displacement of foundation. Ground frost is taken into account in the nordic countries.
<table>
<thead>
<tr>
<th>English</th>
<th>Finnish</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A0] Produce and manage geotechnical design data</td>
<td>[A0] Tuota ja hallitse GEO-suunnittelun tiedot</td>
</tr>
<tr>
<td>[A23] Define subsoil exploration and measuring programme</td>
<td>[A23] Laadi pohjatutkimus- ja mittausohjelma</td>
</tr>
<tr>
<td>[A31] Start building design</td>
<td>[A31] Käynnistä rakennussuunnittelu</td>
</tr>
<tr>
<td>[A33] Propose solution</td>
<td>[A33] Laadi ehdotus</td>
</tr>
<tr>
<td>[A34] Design schemes</td>
<td>[A34] Laadi luonnos</td>
</tr>
<tr>
<td>[A41] Design details</td>
<td>[A41] Laadi toteutussuunnitelma</td>
</tr>
<tr>
<td>[A42] Design for production</td>
<td>[A42] Laadi tuotantosuunnitelmat</td>
</tr>
<tr>
<td>[A43] Do additional tasks</td>
<td>[A43] Tee täydentävät tehtävät</td>
</tr>
<tr>
<td>English</td>
<td>Finnish</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Additions</td>
<td>Lisäykset</td>
</tr>
<tr>
<td>Alternative sites</td>
<td>Sijaintivaihtoehdot</td>
</tr>
<tr>
<td>ARCH schemes, STR schemes, BS schemes, INT schemes</td>
<td>ARK-luonnos, RAK-luonnos, TATE-luonnos, SIS-luonnos</td>
</tr>
<tr>
<td>Brief (CL)</td>
<td>Tarveselvitys (RAP)</td>
</tr>
<tr>
<td>• brief from the client’s work</td>
<td>• rakennuttajan tarveselvitys</td>
</tr>
<tr>
<td>Checked design instruction</td>
<td>Tarkistettu suunnittelulohje</td>
</tr>
<tr>
<td>Description of foundation method</td>
<td>Perustamistapaselvitys</td>
</tr>
<tr>
<td>Description of solutions, Comparison of alternatives, Environmental effects of foundation construction</td>
<td>Ratkaisumallien kuvauksia, Vaihtoehtovertailu, Pohjarakentamisen ympäristövaikutusselvitys</td>
</tr>
<tr>
<td>Design instructions</td>
<td>Suunnittelulohje</td>
</tr>
<tr>
<td>Existing geotechnical information on alternative sites (environment, measurements, soil data)</td>
<td>Vaihtoehtoisten sijaintipaikkojen pohjasuhde-, mittaus- ja ympäristötiedot</td>
</tr>
<tr>
<td>Foundation engineering measures to be carried out, Costs</td>
<td>Valitun sijaintipaikan pohjarakennustoinen toimenpide, kustannukset ja rakentamisedellytykset</td>
</tr>
<tr>
<td>Foundation, Underground spaces, Excavations, Drainage, Subsoil structures, Foundation of yard, Drainage of yard, Underdrains, Structures of yard</td>
<td>Perustaminen, Maanalaiset tilat, Kaivannot, Kuivanpito, Maarakenteet, Piha-alueiden perustaminen, Piha-alueiden kuivanpito, Putkilinjojen perustaminen, Kaivannot, Pihojen rakennerratkaisut</td>
</tr>
<tr>
<td>GEO brief</td>
<td>GEO-tarveselvitys</td>
</tr>
<tr>
<td>GEO design data</td>
<td>GEO-suunnittelun tiedot</td>
</tr>
<tr>
<td>GEO designer</td>
<td>GEO-suunnittelija</td>
</tr>
<tr>
<td>GEO detail designs</td>
<td>GEO-toteutussuunnitelmat</td>
</tr>
<tr>
<td>GEO global designs (description of foundation method)</td>
<td>GEO-luonnossuunnitelmat (perustamistapaselvitys)</td>
</tr>
<tr>
<td>GEO needs</td>
<td>GEO-tarpeet</td>
</tr>
<tr>
<td>GEO programme</td>
<td>GEO-hankesuunnitelma</td>
</tr>
<tr>
<td>Geotechnical information</td>
<td>Pohjatutkimustietoja</td>
</tr>
<tr>
<td>Geotechnical quality objectives</td>
<td>Maa- ja pohjarakenteiden laatutavoitteet</td>
</tr>
</tbody>
</table>
Output and documentation plan, Analyzed experiments and measurements, Designs for foundations of building, Foundation of yard, Subsoil drainage plan, Plat of bottom and tubing plan, Foundation structures plan, Excavation and bottom stoping plan

- Documentation plan contains a list of drawings, output method (CAD, drawing scales etc.). It also contains descriptions of foundation works and methods and work specifications. Analyzed experiments are detailed. Designs for building basement contain drawings of basement solution.

Preliminary schemes (ARCH)

Programme (CL)

Experiment, laboratory and measurement programme, Analyzed experiments and measurements, Foundation methods and limits, Positioning on site

Proposed solution (ARCH)

Resources

Subsoil exploration and measurement programme

Tulostussuunnitelma, Pohjasuhdetarkastelu, Rakennuksen perustamisen suunnitelmat, Piha-alueen perustamissuunnitelma, Salaojitussuunnitelma, Tasas- ja putkijohtosuunnitelma, Maarakennesuunnitelma, Kaivu- ja louhintasuunnitelma

Alustavat luonnokset (ARK)

Hankesuunnitelma (RAP)

Luonnosvaiheen tutkimus-, laboratorio- ja mittausohjelma, Analysoitut pohjaturkemus- ja mittausluokset, Perustamistavat ja pohjarakennusratukset, Sijoitus tontilla

Ehdotus (ARK)

Resurssit

Pohjaturkemus- ja mittausohjelma
SECTION F:
PRODUCTION PROCESS MODEL

Table of contents

ACTIVITY MODEL ..131
A-0 MODEL SCOPE ..131
A0 IMPLEMENT BUILDING ...132
A1 OFFER BUILDING IMPLEMENTATION ...133
 A11 Process invitation to tender ..134
 A12 Implement cost accounting ...135
 A13 Formulate tender ..136
A2 PREPARE FOR PRODUCTION ..137
 A21 Organize project ..138
 A22 Make general production plans ..139
 A23 Control building design during construction ...140
 A24 Prepare for and implement procurements ...141
 A25 Launch site ..142
A3 CONTROL PRODUCTION DURING CONSTRUCTION ..143
 A31 Make detailed production plans ...144
 A32 Control deliveries ..145
 A33 Control construction ..146
 A34 Control and report on site implementation ..147
 A35 Ensure information exchange between parties ..148
A4 BUILD ..150
 A41 Implement earth and foundation works ...151
 A42 Build foundation structures and frame ...152
 A43 Build complementary internal structures, fixtures and equipments153
 A44 Finish internal surfaces ...155
 A45 Construct building services ..156
A5 HAND OVER BUILDING ...157
 A51 Check readiness for handover ..158
 A53 Arrange acceptance inspection with client ...159
 A54 Provide guidance in taking building into use ...160
 A55 Carry out guarantee-period measures ..160
 A56 Assess and document project progress ..161
LIST OF ACTIVITIES ...163
GLOSSARY OF FLOWS ..168
APPENDIX 1
CONTENT OF PLANS AND DRAWINGS (ACTIVITIES A41 - A45)184
ACTIVITY MODEL

A-0 MODEL SCOPE

The flowcharts of the production process model for a new-building-construction project with the tasks and flows are presented on the following pages. The textual part explains the purpose and goals of an individual task of the model and its subtasks.

The "implement building" task (Figure 44) describes the entire production process that yields a building that corresponds to the client's goals. The "resources" input of the task includes materials, products, services, time, energy and money. Task control is based on project documentation which contains the plans and goals that define the end product and the limiting conditions for erecting the building. The mechanism of the task, ie. its implementer, is indicated to ensure the viewpoint of the model. This process model describes the new-building-construction project from the viewpoint of the main implementer of the production process from the arrival of the invitation to tender to the end of the final guarantee inspection, ie. the traditional tasks of the construction company.

Figure 44. Model scope.
A0 IMPLEMENT BUILDING

The purpose of this task (Figure 45) is to produce a building that conforms to the plans drawn according to the wishes of the client within the agreed time and in accordance with set quality goals. The task also aims to ensure realization of the main contractor’s goals for the project such as maintaining the customer relationship, turning a profit and ensuring continued operation. In the model the implementation of the building divides into five subtasks.

At the tender phase of the project an offer is produced for the client concerning project implementation; data that is utilizable if the project is won is also produced at this phase. The "prepare for production" subtask includes activities that are initiated as soon as the contract is signed and need to be completed before construction or the construction phase commences. Production control guides construction in the planned direction. It starts before construction and continues until handover.

Figure 45. Implement building.

All the preceding subtasks of the production process also serve the attainment of the result of the "build" subtask. The subtask involves all the activities connected to physical construction. The handover phase of the project produces a ready-to-
use building which is the goal of the entire building process. The handover phase is intended to ensure that the technically-ready building meets all set goals.

A1 OFFER BUILDING IMPLEMENTATION

The aim of submitting tenders (Figure 46) is to procure work for the company and to win contracts that meet set requirements of both the client and the implementer. Tendering is to meet the following goals:

• cost targets are to be prepared effectively while also ensuring reliability of cost estimate
• submitted tenders are to be profitable
• tender-related risks are to be manageable
• the tender price is to be set so as to allow winning by a small margin.

Figure 46. Offer building implementation.

After the invitation to tender is received, the company acquaints itself with the project, decides whether to submit a tender and tender calculations are planned. A cost estimate is prepared using the firm's input files, method files and schedule of prices as well as information derived from the tender documents. The revised cost
estimate and tender documents are used to prepare a tender that is finalized during the negotiations for a contract. The client organizes the negotiations for a contract and, thus, the subtask is not shown in this part of the model. It is ensured during the negotiations that the parties have similar understanding of the plans, the contents and limitations of the contract and the procedure of additional and modification works is agreed on. The need to change plans or the tender price may come up at the negotiations which means that the proposed amendment is sent to those responsible for design or tender calculations. Finally, the contract is signed by the parties.

A11 Process invitation to tender

The purpose of the task (Figure 47) is to familiarize the main implementer thoroughly with the project, produce the decision to do tender calculations in accordance with company policy and to plan implementation of the calculations.

Figure 47. Process invitation to tender.

The first phase of the task involves familiarizing the person responsible for tender calculations in the main implementer's organization with the tender documents and checking for anything missing and asking the party requesting a tender to immediately provide it. When the main implementer has examined and
familiarized himself with the invitation to tender, he decides whether to participate in competitive bidding. The decision to initiate tender calculations is influenced, for instance, by the company's resources and ability to carry through the project according to set goals. The chances of the company winning the contract are also assessed in the same connection.

The party inviting the tender is notified of his inclusion in competitive bidding. Tender calculations are planned in outline including, for instance, definition of tasks, procurements, scope and detailedness of production planning and definition of the nomenclature to be used. A calculation meeting is held in accordance with the calculation plan where the tasks, responsibilities and schedule for the calculation organization are determined.

A12 Implement cost accounting

The purpose of this task (Figure 48) is, for instance, to familiarize the accounting organization with the project and to produce a preliminary production plan initially for the cost estimate and also as a basis for later production planning for

Figure 48. Implement cost accounting.
the project. Cost accounting produces a revised cost estimate for setting the final tender price.

After the accounting organization has familiarized itself with the project, quantity surveying is done by the main implementer or it is contracted out. Preliminary calls for offers regarding agreed-on work entities or procurements are made which provide additional information for a cost estimate. The calls for offers are implemented according to the company's established action plan. The main production methods, need of work-supervision resources, construction time, need of equipment, need of personnel facilities, use of site area and other factors influencing construction costs are defined in preliminary production planning. Finally, the data generated in accounting is compiled and a cost estimate is prepared for the project. The cost estimate is to be revised on the basis of indicators and experience before it is used for a new subtask.

A13 Formulate tender

The purpose of formulating a tender (Figure 49) is get one that can be submitted to the sender of the invitation to tender by the deadline. The goal of the task is a
tender that wins the competitive bidding by as close a margin as possible.

The first subtask sets the tender price and terms and involves holding a tender meeting where fixed costs, an allowance for risk, an allowance for price increases and the target profit are added to the revised cost estimate according to company policy. The sum is the tender price. Next, the documents required for a tender, such as a schedule, a quality plan, a payment programme and a unit-price list are prepared and compiled. The tender documents and price are finally checked against indicators and experience from previous projects before submitting them.

A2 PREPARE FOR PRODUCTION

The purpose of this task (Figure 50) is to provide conditions for effective and trouble-free implementation of the project.

Figure 50. Prepare for production.

The goals of the task are:

• to build an effective project organization
• to plan the project's production methods, orders of works and site layout in a way that ensures the lowest overall costs, lowest risk of disturbances and preconditions for good occupational safety
• to plan and assign responsibilities for quality assurance measures
• to set a clear cost goal for the project, and
• to launch site works efficiently.

The task produces readiness for launching construction and plans for tools in production control. Various parties engaged in design also get feedback from the task which communicates the key viewpoints of production to building design. The task utilizes preliminary tender-phase production plans and implementation plans of design as well as the company's own files such as the supplier register and input and method files.

A21 Organize project

The purpose of this task (Figure 51) is to select and recruit a capable organization for the project that is capable of carrying out the project without problems.

Figure 51. Organize project.
The first subtask involves selecting a site manager of sufficient experience for the project. The project organization and its functions are defined in cooperation with the manager. Then, the most suitable implementing organization can be chosen for the task. The implementing organization may be formed of the company's own resources or its network of subcontractors may be utilized. Completion of the entire task produces the project organization from available resources. The scope-, quality- and schedule-related requirements for the project govern the subtasks.

A22 Make general production plans

The purpose of this task (Figure 52) is to make plans to assist in the implementation of production to enable controlled implementation of the project. The production plans devised as part of this task are, for the most part, made before commencing construction.

<table>
<thead>
<tr>
<th>Company's quality system</th>
<th>Implementation production and complementary plans (DEP)</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw quality plan</td>
<td>Master schedule</td>
<td></td>
</tr>
<tr>
<td>A221</td>
<td>A222</td>
<td></td>
</tr>
<tr>
<td>Draw master schedule</td>
<td>Draw basic site plans</td>
<td></td>
</tr>
<tr>
<td>A222</td>
<td>A223</td>
<td></td>
</tr>
<tr>
<td>Production planning files</td>
<td>Check compatibility of production plans</td>
<td>O1</td>
</tr>
<tr>
<td></td>
<td>General production plans</td>
<td></td>
</tr>
</tbody>
</table>

Figure 52. Make general production plans.

General production planning prepares plans that serve as tools in implementation control. First, a quality plan is made which defines, for instance, the procedures that produce the desired quality, the scope and special characteristics of the building and the risks related to the project. A master schedule is devised at this point. The basic plans comprise a budget as well as site, labour, safety and machinery and equipment plans. Finally all devised plans are combined, the date
each plan was devised and revised is marked and their mutual compatibility is checked. This way, disturbances resulting from conflicts in production planning are avoided.

A23 Control building design during construction

The purpose of this task (Figure 53) is to make building design more production-friendly and to assess plans from the standpoint of production. Control of design ensures availability of plans at the right time as well as their flawlessness.

Figure 53. Control building design during construction.

Production prepares a drawing schedule which sets the dates when plans are to be available to the implementing organization so as to allow realizing planned production goals. Production is to also inform all designers of needed drawings that are compiled into a drawing schedule. Before designs are supplied to work phases they are to be checked and their correctness assured, for instance, with regard to revisions.
This task produces revised designs for the site and feedback to designers on the needs of production. Production may also give feedback to various designers in design meetings. These meetings are organized by the client, but the main implementer can generally also participate.

A24 Prepare for and implement procurements

The purpose of this task (Figure 54) is to procure the products and services needed in the project in the most advantageous way from the company’s viewpoint and to assure the quality and reliable delivery of procurements. The most important goals of preparing for and implementing procurements are:

- adherence to contract in procurements
- use of suppliers that meet quality and other goals
- to draw up a sufficiently accurate procurements schedule
- to develop cooperation with suppliers
- to ensure efficiency and advantageousness of procurements
- to draw clear-cut, unambiguous contracts, and
- to minimize overall procurement costs.

![Figure 54. Prepare for and implement procurements.](image)
The task begins with the planning of procurements which involves defining needs and their timetables and assignment of responsibilities for procurement tasks. Urgent procurements that need to be implemented first are determined during planning. Calls for offers are prepared for procurements and are sent to carefully selected suppliers. When tenders are submitted, the best one is selected according to earlier agreed criteria. After negotiations for a contract, a contract is signed for delivery of a service or product. This "prepare for and implement procurements" task is used to procure both materials and services.

A25 Launch site

The purpose of launching the site (Figure 55) is to provide the preconditions for starting production by bringing the site to a state of readiness that allows workers and materials to arrive and construction to begin.

The decision to commence production may be taken when the required building and production plans are ready and the project has been established in the company's information systems. All required permits are obtained and notifications made to allow construction to start, such as:

Figure 55. Launch site.

The decision to commence production may be taken when the required building and production plans are ready and the project has been established in the company's information systems. All required permits are obtained and notifications made to allow construction to start, such as:
• building permit
• approval of site manager
• commencement notice to building and occupational safety official
• other commencement notices, and
• certain permits and notices related to occupational safety.

The building project and its goals are presented to the site organization contact and the tasks and responsibilities related to launching production are decided in the kickoff meeting. Establishing a site involves arranging the following necessities:
• site roads
• personnel facilities
• interim telephone, electricity, water and sewer connections
• basic site equipment and warehouse
• rental contracts, and
• site office.

A3 CONTROL PRODUCTION DURING CONSTRUCTION

The purpose of production control (Figure 56) is to supervise the project in accordance with contracted quality standards and target costs. Thus, the goals of production control are:
• implementation of project according to production plans
• staying under cost targets
• prevention of quality defects
• prevention of employment accidents, and
• assuring that deliveries conform to contract terms.

Production control produces information for physical construction to enable its implementation according to plan. Simultaneously, data on implementation is collected and utilized to control the ongoing project. The collected data is also refined for use in new projects.
Figure 56. Control production during construction.

A31 Make detailed production plans

The purpose of making production plans more detailed (Figure 57) is to synchronize work phases and to set precise time frames. In practice production plans are made as detailed as required by the site by

- a more detailed procedural and equipment plan
- planning the order and progression of works
- construction-phase schedules
- weekly schedules, and
- special plans.

Construction-phase production planning is made more detailed at the foundation, frame and interior-works phases of the project. Special plans include, for instance, blasting, demolition, shoring and scaffolding plans.
Figure 57. Make detailed production plans.

A32 Control deliveries

The purpose of this task (Figure 58) is to ensure that each work phase gets the planned necessary products and services at the right time. Control of deliveries focusses here primarily on examining the reception of deliveries and fulfillment of requirements as well as documentation of relevant matters for later use. Deliveries that have not yet been finalized may be revised quantitatively or time-wise as needs become clear during the implementation of construction and design. The revision of a delivery informs the supplier about the following:

- delivery lots; their order and time of delivery
- packing and protection methods
- quality inspections by supplier and site personnel, and
- handling of delivery on site.

Finally, it is ensured that the supplier has received the above-mentioned information and understands it. When a delivery lot arrives to the site, its conformity with the contract is checked; nonconformities are recorded and
Figure 58. Control deliveries.

reported immediately to the supplier. Things that need to be checked:
• delivery documents
• quantity and contents of delivery
• quality defects and transport damages, and
• time and place of delivery and packing method.

A33 Control construction

The purpose of construction control (Figure 59) is to oversee one's own and subcontractors work in order to prevent quality defects and to attain the cost- and time-related goals for each work phase.

Construction control starts with familiarization with the contracts that define the goals of a work phase. Then, the preconditions for launching a work phase are evaluated, such as availability of labour and materials, stage of preceding job and job planning. In the kickoff meeting the quality standards, control method of the work phase and work-phase plan are examined with own personnel or subcontractors.
Figure 59. Control construction.

In time each completed job is inspected and approved and defects or mistakes are reported immediately to the responsible party. Documented data on work phases and their implementation are refined for later use in new projects.

A34 Control and report on site implementation

The purpose of this task (Figure 60) is to assess the state of the project at for example, 1 month intervals to determine the cost- and schedule-related goals and attainment of quality standards. The results are reported for later processing. If the progress of the project requires some revising, corrective measures must be initiated immediately. Schedules are controlled on site by marking the actual progress of works, i.e. the situation at the time of observation, in the drawn schedule. Costs are monitored by comparing actual costs with planned ones, considering the tasks’ degree of completion.
Figure 60. Control and report on site implementation.

A35 Ensure information exchange between parties

The purpose of this task (Figure 61) is to ensure exchange of information between all parties to the project during construction so as to prevent disturbances from deficient flow of information.

The task consists of various types of meetings and reviews where people are in direct contact with each other. Daily entries are made in the site journal concerning, for instance, conducted inspections, beginning and end of work phases, material deliveries, received designs, extra and modification work, size of labour force and approved installments.

The client calls site meetings which are intended to enhance information flow between the parties to the project. Site meetings are the venue where, for instance, the situation concerning the schedule and design as well as additional and modification works are dealt with. The main implementer takes part in the meetings along with all major subcontractors and designers. Main, subsidiary and subcontractors meet in 1-2 weeks intervals. In the meetings they examine:
Figure 61. Ensure information exchange between parties.

- the state and schedule of works
- conducted inspections and reviews
- notices and inspections by client
- main contractor's production plans
- other contractors' work schedules, and
- coordination of various contractors' works.

The main contractor arranges the necessary official inspections when work phases so require. Official inspections consist of:
- position review
- foundation review
- structural review
- inspection of HVAC systems and smoke flues
- final inspection
- fire and civil-defence shelter inspections
- final inspection of lifts
- inspections by health officials and police, and
- inspections by electric and water utilities.
A4 BUILD

The purpose of this task (Figure 62) is to bring the physical construction to completion. All that has been done earlier in the production process is aimed at implementing this task. Its intention, thus, is to produce a product that conforms to the plans that are based on the client's needs. The task divides into five parts:

- earth and foundation works
- foundation structures and frame
- complementary internal components, fixtures and equipment
- internal surfaces, and
- buildings services.

Figure 62. Build.

The subtasks of construction include the preparation of the work area for various work phases, such as erection of scaffolding and making machinery operational. Cleaning of the work area after the work phase is also considered a subtask of these tasks.
A41 Implement earth and foundation works

The purpose of this task (Figure 63) is to bring the project’s earth and foundation works to completion. The earth construction phase starts with clearing of the construction site and demolition of old obsolete buildings. Clearing means removal of large rocks, tree stumps, roots and soils rich in humus from the construction site. The task also includes, besides demolition of old buildings, also protection of the surrounding structures and plant-life as well as harvesting of useful timber.

Earthworks include excavations on the site and hauling away of dug-up soil. Blasting refers to rock stabilization and compaction in addition to the blasting and hauling away of rock. Foundation works comprise, for instance, piling, soil stabilization, reinforcement of foundations and building of sewers and subsurface drainage.

Backfill and compaction works consist of filling in the space under and around foundations as well as levelling of the grounds of the site to the planned height. The surface structures of the site include lawns, planted areas and paving of the...
trafficked area. Outdoor equipment includes lighting fixtures, play and sports equipment and fencing.

The content of the drawings and plans governing subtasks are explained in app. 1.

A42 Build foundation structures and frame

The purpose of this task (Figure 64) is to build the foundation structures and frame of the building according to agreed goals. The foundations consist of:
- footings, ie. wall, column and plinth footings
- plinths, ie. subfloor foundation columns, plinths and plinth beams
- base floors, bearing and non-bearing structures, and
- special structures of base floors that include foundation structures essentially different from other base-floor structures such as ramps and shafts, internal channels and tunnels, machinery and equipment beds, leakage containers, service and other special pits as well as swimming pools and other basins.

![Figure 64. Build foundation structures and frame.](image-url)
The building frame comprises the frame structures of the floors of the building: the parts of the frame above the base floor which include:

- the civil defence shelter
- stairwells and lift shafts
- stairways consisting of flights of stairs, landings and concrete railings
- internal bearing partition walls
- columns, beams, slabs, and
- precast box units, i.e. elements made up of several structural units which are not complementary structural elements or fixtures.

The facade consists of vertical structures that separate the building spaces from the outdoors such as external walls including windows and doors. Complementary sections that form an integral part of the facade, such as balconies and shelters, are included. The structural elements of the facade are:

- external walls including bearing and light-weight, prefabricated or on site-built, ones
- wood-, metal- and plastic-framed windows
- external doors, and
- facade-complementing sections including structures that complement the external wall or that form an integral part of it such as loading platforms, balcony-structures, ladders on external walls, sun protections, etc. which are generally specified by project.

The roof structures consist of:

- the bearing roof structures, their complementary structures, eaves and the roofing as well as sheet-metal edging strips and cladding of chimneys and hatches
- roof fixtures consisting of gutters, downpipes, roof outlets, catwalks and snow guards
- skylights
- above-well machine rooms consisting of machine rooms and equipment shelters built on the roof that are structurally different from other structural elements, and
- terraces, etc. above a heated space.

The content of the drawings and plans governing subtasks are explained in app. 1.

A43 Build complementary internal structures, fixtures and equipments

The purpose of this task (Figure 65) is to build the complementary internal structures, fixtures, and equipments as agreed. Complementary internal structures include:

- internal doors with frames
• light partition walls including internal ones built on site and light-weight prefabricated partition walls
• suspended ceilings underneath the ceiling proper
• raised floors built on top of a horizontal bearing structure
• surface structures of sauna, cold cellar, machine rooms, etc. which it is not practical to classify as walls, ceilings and floors
• internal railings, ladders, working platforms, catwalks and complementary stairs, and
• ducts, channels and fireplaces.

Figure 65. Build complementary internal structures, fixtures and equipments.

Building equipment includes internal fixtures, equipment and machinery that are not movables or investments in in-house operations. Fixtures consist of internal fixed wooden or metal fixtures such as closets, cupboards, shelving, work tops, sinks and benches. Accessories consist of internal accessories such as coat racks, hooks, mirrors, airing racks, installed internal window sills, directories, foot scrapers, hall carpets, sports-equipment racks, curtain rails and cover boards, venetian blinds, etc. Appliances consist of ranges, refrigerators, freezers, sauna stoves and common laundry equipment.

Handling equipment is the most important equipment consisting of mechanized equipment and procurements that serve building traffic and materials handling and which are included in construction costs and are, thus, not operational investments. These include, for instance, lifts, escalators and conveyors.
The content of the drawings and plans governing subtasks is explained in app. 1.

A44 Finish internal surfaces

The purpose of this task (Figure 66) is to finish the surfaces of internal spaces by coating, panelling and painting them including also levelling and topping. The finishing of wall surfaces consists of painting and wallpapering as well as applying other coatings, after the required preparatory work, independent of whether a surface is part of an external or partition wall of a building.

![Diagram](image)

Figure 66. Finish internal surfaces.

The finishing of ceilings consists of painting and plastering, laying of insulation or similar materials as a finish including the preparatory work. Floors are finished by applying coverings, coatings and other materials such as floorings, parquets, tiles and boards including the necessary painting, levelling and topping.
A45 Construct building services

The purpose of this task (Figure 67) is to construct the building services. Construction of the heating system consists of building the heat generating, distribution and heat release systems and related insulations. The construction of a plumbing and drainage system comprises plumbing fittings, water-supply piping, wastewater treatment, drainage systems, sanitary appliances and related insulations. Air-conditioning system construction involves mechanical rooms, ductwork, air distributors, ventilation equipment and special systems of the civil-defence shelter and the insulations pertaining to each.

Figure 67. Construct building services.

The construction of the electrical system involves, for instance, areal electrification, power distribution stations, switchboards, cable routes, lighting fixtures, devices and equipment. Installation of information systems involves telephone, antenna, sound reproduction, security, computer and building automation systems and their combinations. Other building services to be built include, for instance, refrigeration-technical, steam and fire-fighting systems.

The content of the drawings and plans governing subtasks is explained in app. 1.
A5 HAND OVER BUILDING

The purpose of this task (Figure 68) is to hand over the building to the client on the agreed schedule and to the close the project and meet the guarantee period obligations.

Figure 68. Hand over building.

The readiness of the building for handover is ascertained by the main implementer at first. Then, officials inspect the building before it is handed over to the client. It must be ensured that the points to be inspected are in order before officials inspect them. A signed inspection certificate must be received from the inspectors.

The final official inspections include:
• the building official’s final inspection
• fire inspection
• final inspection of civil-defence shelter and performance test
• final inspection of HVAC systems and inspection of smoke flues
• final inspection of lifts
• inspections by health officials and police, and
• inspections by electric, water and telephone utilities.
The main contractor and the subcontractor who implemented or supplied a system unit participate in the inspections besides the official.

To ensure that the building will be used as planned, the future users must be given instructions for its use. The company carries out guarantee-period measures as contracted in order to secure a continued relationship with the customer. Finally, the project process is evaluated and documented within the company.

A51 Check readiness for handover

The purpose of this task (Figure 69) is to ensure that the building may be handed over to the client in flawless condition and on the agreed schedule. The state of all the building's spaces and technical systems is inspected. Deficiencies and nonconformities are recorded and are fixed immediately. When the structures and systems are found faultless, their use is avoided and they are cleaned for the last time before handover to client. Own foremen as well as subcontractors' foremen take part in the inspection.

![Diagram showing the process of check readiness for handover](image)

Figure 69. Check readiness for handover.
A53 Arrange acceptance inspection with client

The purpose of this task (Figure 70) is to hand over the building to the client on the agreed schedule and in a flawless condition. Before the acceptance inspection, all construction-period inspection, review and setting-up logs are submitted to the client for approval and the handover date is agreed with the client after the readiness of the building for handover is ensured. Mistakes and defects are recorded during the inspection and agreement on their correction procedure and liabilities and the schedule of repairs is reached. The building may be handed over and taken into use in sections. Then, an acceptance inspection is arranged separately for each section. The acceptance inspection terminates the contractor's liability for the building as concerns insurances, security and user fees.

Figure 70. Arrange acceptance inspection with client.

In connection with the handover, the client receives handover material consisting of the guarantee certificates, operating instructions and handover drawings related to the building and its equipment and machinery.
A54 Provide guidance in taking building into use

The purpose of this task (Figure 71) is to teach the future user to maintain and use the building correctly and in the most advantageous way. First, an agreement is reached with the client on how and who will be provided guidance. The actual instruction is given on several occasions, if necessary, and to various groups and concerning various sections of the building.

Figure 71. Provide guidance in taking building into use.

A55 Carry out guarantee-period measures

The purpose of this task (Figure 72) is to take care of post-handover obligations and any possible notices of defect in a controlled manner and to create conditions for development of operations by learning from detected quality problems. Controlled discharge of guarantee-period obligations is intended to maintain client relationships and to create a favourable image of the company's construction services.
Figure 72. Carry out guarantee-period measures.

Guarantee-period activities begin with the creation of a guarantee repairs folder in which notices of defect and documents on implemented repairs as well as other guarantee-related documents are compiled. Servicing and adjustment works that are part of the contract, but which have not been done during construction, are done as soon as possible. These works include adjustment of the heating system, finishing of outdoor areas, etc.

The defects reported by the client are assessed as to liability and repair obligation, and repairs are started without delay, if necessary. When repairs under guarantee have been done and the guarantee expires, the client releases the security furnished for the guarantee period. The company also accepts notices of defect after the one-year guarantee period, but scrutinizes them more closely with respect to liability and repair obligation.

A56 Assess and document project progress

The purpose of this task (Figure 73) is to assess the success of the project and to file documents. The task starts with preparations for a follow-up meeting which involves project analysis based on, for instance, indicators and seeking out of positive and negative factors. Items of the agenda of the follow-up meeting
include the smoothness of production, financial issues, evaluation of the interest groups, feedback from clients, etc. A final report on the project is prepared to show its progress by stages. Corrective measures for company-level mistakes are started. Finally, project documentation and other documents are filed in the company archives. The collected project data is utilized in developing the company's operations.

Figure 73. Assess and document project progress.
LIST OF ACTIVITIES

[A0] Implement building

[A1] Offer building implementation

[A11] Process invitation to tender
 [A111] Familiarize yourself with tender documents and inspect material
 [A112] Make decision on submitting tender
 [A113] Plan tender phase

[A12] Implement cost accounting
 [A121] Familiarize yourself with project
 [A122] Implement quantity surveying
 [A123] Inquire about estimated procurement prices
 [A124] Do preliminary production planning
 [A125] Price
 [A126] Revise cost estimate

[A13] Formulate tender
 [A131] Set tender price and terms
 [A132] Draw tender documents
 [A133] Compile and approve tender
 [A134] Submit tender

[A2] Prepare for production

[A21] Organize project
 [A211] Select person responsible for production
 [A212] Define project organization and tasks
 [A213] Select project organization

[A22] Make general production plans
 [A221] Draw quality plan
 [A222] Draw master schedule
 [A223] Draw basic site plans
 [A224] Check compatibility of

[A0] Toteuta rakennus

[A1] Tarjoa rakentamisen toteutusta

[A11] Käsittele tarjouspyyntö
 [A111] Tutustu tarjouspyyntöasiakirjoihin ja tarkasta aineisto
 [A112] Tee päättös tarjouksen jättämisestä
 [A113] Suunnittele tarjousvaihe

[A12] Tee kustannuslaskenta
 [A121] Perehdy kohteeseen
 [A122] Suorita määrälaskenta
 [A123] Kysy ennakkohintoja hankinnille
 [A124] Tee alustava tuotannon suunnittelu
 [A125] Hinnoittele
 [A126] Tarkasta kustannusarvio

[A13] Muodosta tarjous
 [A131] Määrittele tarjoushinta ja -ehdot
 [A132] Laadi tarjouksen asiakirjat
 [A133] Kokoa ja hyväksy tarjous
 [A134] Toimita tarjous perille

[A21] Organiso projekti
 [A211] Valitse tuotannosta vastaava henkilö
 [A212] Määrittele projektiorganisaatio ja tehtävät
 [A213] Valitse projektiorganisaatio

[A22] Tee tuotannon yleissuunnitelmat
 [A221] Laadi laatusuunnitelma
 [A222] Laadi yleisaikataulu
 [A223] Laadi työmaan perussuunnitelmat
production plans

[A23] Control building design during construction
 [A231] Prepare drawing schedule
 [A232] Check and approve submitted designs
 [A233] Have drawing schedule approved

[A23] Ohjaa rakennussuunnittelua rakentamisen aikana
 [A231] Laadi piirustusaikataulu
 [A232] Tarkasta ja hyväksy saapuvat suunnitelmat
 [A233] Hyväksytä piirustusaikataulu

[A24] Prepare for and implement procurements
 [A241] Plan procurements
 [A242] Implement calls for offers
 [A243] Compare offers and make selection
 [A244] Conclude contract

[A24] Valmistele ja toteuta hankinnat
 [A241] Suunnittele hankinnat
 [A242] Tee tarjouskyselyt
 [A243] Vertaile tarjookia ja tee valinta
 [A244] Tee sopimus

[A25] Launch site
 [A251] Make decision to start production
 [A252] Obtain permits and make notifications
 [A253] Hold production kickoff meeting
 [A254] Establish site

[A25] Aloita työmaa
 [A251] Tee tuotannon aloituspäätös
 [A252] Hae luvat ja tee ilmoitukset
 [A253] Pidä tuotannon aloituspalaveri
 [A254] Perusta työmaa

[A3] Control production during construction

[A31] Make detailed production plans
 [A311] Make detailed method and equipment plan
 [A312] Plan work sequences
 [A313] Draw construction-phase and weekly schedules
 [A314] Draw special plans

[A31] Tarkenna tuotannonsuunnitelmia
 [A311] Tarkenna menetelmä- ja kalustosuunnittelua
 [A312] Suunnittele työ- ja etenemisjärjestelyiset
 [A313] Laadi rakentamisvaihe ja viikkoaikataulut
 [A314] Laadi erityissuunnitelmat

[A32] Control deliveries
 [A321] Revise deliveries
 [A322] Make reception inspections
 [A323] Document deliveries

[A32] Ohjaa toimituksia
 [A321] Tarkenna toimitukset
 [A322] Tee vastaanottotarkastukset
 [A323] Dokumentoi toimitukset

[A33] Control construction
 [A331] Evaluate job planning and preconditions for launching work

[A33] Ohjaa rakentamisen työvaiheita
 [A331] Tarkasta työn suunnittelu ja aloitusedellytys
Phase

[A332] Hold kickoff meeting for work phase
[A333] Check state of work phase and organize works
[A334] Do tests, adjustments and checkups
[A335] Review work phase

[A34] Control and report on site implementation
[A341] Monitor realization of schedule-related goals
[A342] Control attainment of site's quality standards
[A343] Monitor realization of cost-related goals
[A344] Evaluate need for corrective measures

[A35] Ensure information exchange between parties
[A351] Arrange construction-period official inspections
[A352] Keep site journal
[A353] Hold contractor meetings

[A4] Build

[A41] Implement earth and foundation works
[A411] Clear and demolish
[A412] Excavate and blast
[A413] Implement foundation works
[A414] Fill in and compact
[A415] Implement yard equipment and constructions

[A42] Build foundation structures and frame
[A421] Build foundation structures
[A422] Build frame
[A423] Build facades
[A424] Build roof structures

[A43] Build complementary internal structures, fixtures and equipment

[A44] Rakenna

[A41] Rakenna maa- ja pohjarakenteet
[A411] Raivaa ja pura
[A412] Kaiva ja louhi
[A413] Tee pohjarakenteet
[A414] Täytä ja tiivistä
[A415] Tee pihavarusteet ja rakenteet

[A42] Rakenna perustukset ja runko
[A421] Tee perustukset
[A422] Tee runkorakenteet
[A423] Tee julkisivut
[A424] Tee yläpohjarakenteet

[A43] Tee täydentävät sisäosat, varusteet ja laitteet
[A431] Build light-weight partitions walls and internal doors
[A432] Install suspended ceilings
[A433] Install raised floors
[A434] Build ladders, catwalks, ducts, channels, fireplaces, etc.
[A435] Install equipment, fixtures and appliances

[A431] Tee kevyet väliseinät ja sisä-ovet
[A432] Asenna alakatot
[A433] Asenna korokelattiat
[A434] Tee kulkurakenteet, hormit, kanavat ja tulisijat
[A435] Asenna varusteet, laitteet, kalusteet

[A44] Finish internal surfaces
[A441] Finish ceiling surfaces
[A442] Finish wall surfaces
[A443] Finish floor surfaces

[A44] Tee sisäpinnat
[A441] Tee katon pintarakenteet
[A442] Tee seinän pintarakenteet
[A443] Tee lattian pintarakenteet

[A45] Construct building services
[A451] Install heating system
[A452] Install plumbing and sewer system
[A453] Install electrical system
[A454] Install air-conditioning system
[A455] Install information system
[A456] Install other building services

[A45] Rakenna talotekniikka
[A451] Asenna lämmitysjärjestelmä
[A452] Asenna vesi- ja viemärijärjestelmä
[A453] Asenna sähköjärjestelmä
[A454] Asenna ilmastointijärjestelmä
[A455] Asenna tietojärjestelmä
[A456] Asenna muut tekniset järjestelmät

[A5] Hand over building

[A51] Check readiness for handover
[A511] Check readiness of structures and building services
[A512] Arrange correction of mistakes and defects
[A513] Do final cleaning

[A51] Tarkasta luovutusvalmius
[A511] Tarkasta tilojen ja teknisten järjestelmien valmius
[A512] Järjestä virheiden ja puutteiden korjaaminen
[A513] Tee loppusiivous

[A52] Arrange official final inspections

[A52] Järjestä viranomaisten lopputarkastukset

[A53] Arrange acceptance inspection with client
[A531] Submit agreed inspection material to client for approval
[A532] Inspect building with client
[A533] Submit building's handover material to client
[A534] Arrange correction of mistakes and defects

[A53] Järjestä vastaanottotarkastus tilaajan kanssa
[A531] Luovuta sovittu tarkastusaineisto tilaajalle hyväksyttäviksi
[A532] Tarkasta kohde yhdessä tilaajan kanssa
[A533] Anna asiakkaalle kohteen luovutusaineisto
[A534] Huolehdi puutteiden ja virheiden korjaamisesta
[A54] Provide guidance in taking building into use
 [A541] Arrange guidance for taking building into use
 [A542] Guide users in building use

[A55] Carry out guarantee-period measures
 [A551] Arrange maintenance and adjustment works
 [A552] Implement repairs under guarantee

[A56] Assess and document project progress
 [A561] Go through things that went well and poorly
 [A562] Arrange follow-up meeting
 [A563] Arrange launching of corrective measures
 [A564] Prepare final report
 [A565] Document and file project material
Accepted drawing schedule: An accepted drawing schedule is a schedule for formulating implementation, production and supplementary building plans approved by the designers and the main implementer.

Accepted tender: The client accepts a tender which meets required criteria and is most advantageous to the him.

Accepted work performance: An accepted work performance refers to one reviewed and meeting the requirements of the contract.

Agenda of follow-up meeting: The follow-up meeting takes up issues such as preparing for production, profitability of project, evaluation of designers, evaluation of subcontractors and suppliers as well as feedback from the client.

Approved inspection documents: All construction-period inspection, review and setting-up logs are accepted by the client before the acceptance inspection.

Available personnel: Available personnel consists of the company's work force and available external skilled labour.
Basic plans: Basic production plans include a budget as well as site, labour, safety and machinery and equipment plans.

Bill of quantities: Bill of materials required for a building project and their quantities based on the quantity survey.

Building ready for handover: The entire building can be handed over to the client after the main implementer has inspected the structures and systems and found them ready for handover as well as done the final cleaning.

Building services: Building services consist of the building’s technical systems such as heating, electrical, air-conditioning, information and water supply and drainage systems.

Calculation decision: The decision to commence tender calculations.

Calculation files: Calculation files contain general input, method and price files and ones the company has compiled for itself.

Calculation plan: The calculation plan defines those responsible for tender calculations, the nomenclatures of the company, the scope and detailedness of production planning and the calculation schedule.

Call for offers: Calls for offers are

Määäluerro: Määälaskennan tulosena syntyvä luettelorakennuskohteessa tarvittavista materiaaleista ja niiden määrästä.

Luovutusvalmis rakennus: Pääteuttaja on tarkastuksissaan todennut rakenteet ja järjestelmät luovutusvalmiiksi sekä tehnyt loppusiivouksen, jolloin koko rakennus on valmis luovutettavaksi asiakkaalle.

Talotekniikka: Talotekniikka käsittää rakennuksen tekniset järjestelmät, kuten lämmitys-, sähkö-, ilmastointi-, tieto- sekä vesi- ja viemärijärjestelmät.

Laskentapäätos: Laskentapäätos antaa impulssin tarjouslaskenna aloittamiselle.

Laskentatiedostot: Laskentatiedostot sisältävät yleisiä sekä yrityksen itseleen keräämiä menekki-, menetelmä- ja hintatiedostoja.

Laskentasuunnitelma: Laskentasuunnitelma määrittelee laskennon vastuuhenkilöt, yrityksen käyttämät nimikeistöt, tuotannonsuunnittelun laajuuden ja tarkkuuden sekä laskennan aikataulun.

Tarjoukselys: Edullisimman työsu-
submitted to subcontractors to find the most advantageous offer for a work performance or material delivery.

Capable users: Capable users have undergone training in building use.

Checked tender: Tender prepared by the main implementer that is ready to be submitted to the inviter of the tender.

Company's quality system: The quality system comprises the measures, liabilities and documents that assure meeting set or supposed demands and development of the company.

Company's development principles: Organizational quality principles defined by company management and a declaration of intent for continuous improvement as well as related procedural instructions.

Company's work situation: The company's present and future work situation affects availability of resources and must be taken into account when deciding whether to start doing calculations.

Complementary internal structures, fixtures and equipments: Complementary internal structures, fixtures and equipments consist of internal doors, light-weight partition walls, suspended ceilings and raised floors, etc.

Completed work phase: The completion of a work phase and its compliance with goals is established by an inspection which makes its acceptance possible.

rituksen tai materiaalitoimituksen selvittämistä varten aihankkijoille lähetettävä tarjouspyyntö eli tarjouskysely.

Osaavat käyttäjät: Osaavat käyttäjät ovat käyneet läpi koulutuksen, jossa on opastettu rakennuksen käyttöä.

Tarkastettu urakkatarjous: Pääteuttajan laatima urakkatarjous on sii nä valmiudessa, että se voidaan toimittaa tarjouspyynnön lähettäjälle.

Yrityksen laatujärjestelmä: Laatujärjestelmä sisältää toimenpiteet, vastuut ja dokumentit, joilla varmistetaan asetettujen tai oletettujen vaatimusten täyttyminen ja yrityksen kehittyminen.

Yrityksen kehittämisperiaatteet: Yrityksen johdonmäärittelemät organisaation laatuperiaatteet ja tahdonilmaus jatkuvaa parantamiseen sekä vastaavat menettelytapaohjeet.

Yrityksen työkanta: Yrityksen nykyinen ja tuleva työtilanne vaikuttaa resurssien saatavuuteen, joten se on otettava huomioon laskentapäätöstä tehtäessä.

Täydentävät sisäosat, varusteet ja laitteet: Täydentävät sisäosat, varusteet ja laitteet käsitettävät mm. sisäovet, kevyet väliseinät, alakatot ja koroke-lattiat.

Valmis työvaihe: Valmis työvaihe on todettu tarkastuksessa loppun suoritetuksi ja tavoitteiden mukaiseksi, joten se voidaan vastaanottaa.
Construction waste: All excess material of the site including soils, rock, wood and metal scrap.

Construction-period feedback and documentation: Compiled data and feedback on implementation of project from tender phase to handover.

Construction-phase and weekly schedules: Construction-phase and weekly schedules describe the progress of work and events that influence production in more detail than the master schedule.

Contract: The contract defines the building project's construction works and time-wise limits for their implementation.

Contractor: In traditional building contracting, the main implementer performs construction-technical works on the basis of existing plans either himself or by contracting them out.

Corrective measures for production control: Production control receives feedback which is used to correct implementation or plans in the right direction.

Cost estimate: The cost estimate is a tender-phase estimate of construction-related costs.

Daily site journal: Daily entries are made in the site journal concerning beginning and end of work phases and all major events such as inspections, deliveries and tests.

D
Data on deliveries: The data include delivery lots, order and time as well as packing and protection methods.

Data on inspected deliveries: The data include the scope of delivery, delivery time, quality defects and inspections as well as handling of delivery on site.

Data on inspections and their results: The timing and content of on-site inspections and reviews, and later their results, are to be conveyed to the key parties and the site journal.

Data on results: The data describe the progress of construction in accordance with plans and problems that have arisen and the reasons for them.

Decision to start: The launching decision provides an impetus for holding a kickoff meeting and establishing the site.

Detailed method and equipment plan: The method plan defines the main production methods, modes of implementation by work types, division of the building into jobs and the sequence of implementing blocks and jobs. The equipment plan defines the machinery needed on site, the required ratings and capacities and how long it is needed.

Detailed production plans: General production plans have been made more detailed to correspond to the daily needs of production.

Development proposals: Proposals for measures to improve production methods and procedures.

Tiedot toimituksista: Tiedot sisältävät toimituserät, -järjestyskseen ja -ajan sekä pakkaus- ja suojaustavat.

Tiedot tarkastetuista toimituksista: Tiedot sisältävät toimituksen määrän, toimitusajan, laatuvirheet ja laatutar-kastukset sekä toimituksen käsittelevä vyömaalla.

Tiedot tarkastuksista ja niiden tuloksista: Ajoitus ja sisältö tiedot työmaalla tehtävistä tarkastuksista ja katselmuksista sekä myöhemmin niiden tuloksista tulee toimittaa merkit- tyksellisille osapuolille sekä työmaa-päiväkirjaan.

Tieto toteutuneesta ja poikkeamista: Tieto kuvaarakennustyön edistymistä laadittuihin suunnitelmiin nähden sekä syntyneitä ongelmia ja niiden syitä.

Aloituspäätös: Aloituspäätos antaa impulssin aloituspalaverin pitämiselle ja työmaan perustamiselle.

Tarkennettu menetelmä- ja kalusto-suunnitelma: Menetelmäsuunnitelma määrittelee päätuotantomenetelmät, toteutustavat työlaiteittain, rakennuksen jaon työkohteisiin sekä lohkojen ja työkohteiden suoritusjärjestyksen. Ka-lustosuunnitelma määrittelee työmaallala tarvittavat koneet, koneiden teho- ja kapasiteettivaatimukset sekä tarveajan.

Tarkennetut tuotannonsuunnitelmat: Tuotannon yleissuunnitelmat on tarkennettu tuotannon päiviittäisen käytön vaatimusten mukaisiksi.

Kehitysehdotukset: Tuotannon mene-telmien ja toimintatajojen kehittämi-seksi annetut toimenpide-ehdotukset.
Documented deliveries: The documents contain data on deliveries. See "Data on deliveries" and "Data on inspected deliveries".

Draft tender: The draft tender is a preliminary form of tender of the calculation phase when the final price has not yet been fixed.

Drawing schedule: The drawing schedule sets the completion dates of various building plans from the viewpoint of production.

Earth and foundation works: Earth and foundation works include excavation, rock blasting, soil stabilization, piling, building of sewers and subsurface drainage as well as surface structures of the site.

Feedback and documentation on inspections: Memos are prepared on site inspections which serve as feedback and documentation for inspections.

Feedback to supplier: Feedback to subcontractor on delivered products or services, if necessary.

Final report: The final report explains the project from start to finish including problem areas and things that went well.

Flawless building: Inspected spaces and systems on site that are in compliance with plans and agreements and accepted as such by the client constitute a flawless building.

Flawless structures and systems: An
inspection reveals individual structures’ and systems’ compliance with goals and plans. Unless mistakes and defects are noticed, they can be considered flawless.

Follow-up meeting memo: The memo contains all topics dealt with in the meeting as well as decisions taken with respect to further measures.

Foundation structures and frame: Foundation structures include the footings, plinths, base floors and special structures of the base floor of a building. The building frame consists of the parts of the frame above the base floor which include columns, beams, slabs, facades and the roof slab.

Future users: People and/or organizations that will be involved in the activity taking place in the building.

G

General production plans: General production plans include the quality plan, the master schedule and basic plans.

Guarantee certificates, use instructions and handover drawings: Guarantee certificates, use instructions and handover drawings comprise the material to be submitted to the client. They include use instructions and guarantee certificates for machinery and equipment and use and maintenance instructions for various structures.

Telmät: Tarkastuksessa todetaan yksittäisten rakenteiden ja järjestelmien tavoitteiden ja suunnitelmien mukaisuus ja ellei virheitä ja puutteita havaita, voidaan niitä pitää virheettömänä.

Jäkipalaverin muistio: Muistioon kirjataan asiat, joita palaverissa on käsitelty sekä päätökset, jotka on tehty jatkotoimenpiteitä ajatellen.

Perustukset ja runko: Perustuksiin kuuluvat rakennuksen aturat, perusmuurit, alapohjat ja alapohjan eritysraakenteet. Rakennuksen runkoon luetaan kuuluvaksi alapohjan yläpuolella olevat kantavat rakenteet, joita ovat mm. pilarit, palkit, laatat, julkisivut ja yläpohja.

Tulevat käyttäjät: Rakennukseen sioitettuvaan toimintaan osallistuvat henkilöt ja/tai organisaatiot.

Tuotannon yleissuunnitelmat: Tuotannon yleissuunnitelmiin kuuluvat laatusuunnitelma, yleisaikataulu ja perussuunnitelmat.

Takuutodistukset, käyttöohjeet ja luovutuspiirustukset: Takuutodistukset, käyttöohjeet ja luovutuspiirustukset muodostavat asiakkaalle luovutettavan aineiston, joka sisältää koneita ja laitteita koskevat ohjeet ja takuutodistukset sekä erilaisten rakenteiden käyttö- ja huolto-ohjeet.
Guarantee-period feedback and documentation: Guarante-period feedback on the building is collected internally and received from clients (incl. notice of defect) and is then documented along with the required corrective measures.

Guarantee-period improvements: Guarantee-period improvements include correction of any possible mistakes and flaws in the contracted works.

Guidance procedure for taking building into use: Main implementer’s method of guiding building’s future users.

Handover material: Handover material consists of the building-project handover documents, HVAC-works handover documents, electrical-works documents, automation-works documents, building-specific documents, apartment-specific documents and administrative handover documents of the housing corporation.

Implementation, production and complementary plans: Building, production and installation plans of various designers.

Incomplete work phase: Incomplete work phase refers to an ongoing or uninspected task.

Inspected implementation, production and complementary plans: Implementation, production and complementary plans received from various designers whose flawlessness and
Implementability have been inspected. **Inspected job planning:** Job planning have been inspected by the main contractor.

Inspected tender documents: Tender documents submitted by the client are inspected to determine that they include all necessary documents and are free of errors.

Inspection documents: Inspection documents are documents signed by officials after inspections which they submit to the main contractor.

Inspection memos: A memo on a work-phase inspection that records defects and mistakes as well as things that went smoothly.

Internal structures: Internal surfaces consists of the surface structures of a building's internal spaces including levelling and topping, etc.

Job planning and preconditions for starting work: Job planning involves assessment of the work phase, choice of method, determination of resource needs, establishment of order of works and planning of quality inspections.

Market situation: Market situation refers to the situation in the construction market that affect the tender-phase calculation decision and setting of tender price.

Master schedule: The master schedule is the backbone of implementation and a tool for controlling construction. It sets the key time-wise goals and

Tarkastettu työnsuunnittelu: Pääura-koitsijan työnjohto on tarkastanut työnsuunnittelun.

Tarkastetut tarjouspyyntöasiakirjat: Asiakkaalta tulleet tarjouspyyntö-asiakirjat tarkastettuina siten, että ne sisältävät kaikki tarvittavat asiakirjat eivätkä sisällä virheitä.

Tarkastusasiakirjat: Tarkastusasiakirjat ovat viranomaistarkastuksissa viranomaisen allekirjoittamat ja pää-urakoitsijalle luovuttamat asiakirjat.

Tarkastusmuistiot: Työvaiheiden tarkastuksista tehdyt muistiot, joissa ovat kirjattuna puutteet ja virheet sekä hyvin sujuneet asiat.

Sisäpinnat: Sisäpinnat käsittävät rakennuksen sisäpuolisten tilojen pinta- rakenteet alustoineen.

Työnsuunnittelun ja aloitusedellytykset: Työnsuunnittelun sisältää työvaiheen arvioinnin, menetelmävalinnan, resurssien määrittämisen, työjärjestyksen määräämisen ja laatutarkastusten suunnittelun.

Markkinatilanne: Markkinatilanne on rakennusalalla valitseva suhdanne tilanne, joka vaikuttaa tarjousvaiheessa laskentapäätöksen ja tarjoushinnan määrittämiseen.

Yleisaikataulu: Yleisaikataulu on toteutuksen runko ja rakennustyön ohjausväline. Yleisaikataulu määrittää tärkeimmät ajalliset tavoitteet ja on
serves as basic data for lower-level job planning.

Materials, components and services:
Materials include cement, lumber, etc. Components consist of windows, doors, elements, etc. Services include work performances, haulage, etc.

Mistakes and defects in building:
Mistakes or defects in the building detected by the client that constitute a breach of contract.

Mistakes or defects in structures and systems:
Mistakes or defects detected by main contractor in own inspection.

Notice of participation:
The tenderer is informed of the company's inclusion in competitive bidding.

Notices of defect:
A notice of defect is an announcement of some work performance being contrary to contract as well as a demand for repair or compensation.

Official regulations:
Society controls construction by issuing regulations, ordinances, laws and rules that govern construction.

Organizational structure and task descriptions:
Organizational structure and task descriptions define the project’s main tasks and the responsible persons including their

lähtötietona alemman tason työsuunnittelulle.

Materiaalit, tuoteosat ja palvelut:
Materiaaleja ovat mm. sementti ja puutavara. Tuoteosiin kuuluvat mm. ikkunat, ovet ja elementit. Palveluihin luetaan kuuluvaksi mm. työsuorituksia ja kuljetuksia.

Virheitä ja puutteita rakennuksessa:
Asiakkaan kohteessa havaitsemat sopimuksen vastaiset virheet tai puutteet.

Virheitä tai puutteita rakenteissa ja järjestelmissä:
Pääurakoitsijan itseellisluovutuksessa havaitsemat virheet tai puutteet kohteen tiloissa tai järjestelmissä.

Ilmoitus osallistumisesta:
Tarjouspyynnön lähettäjälle lähetetään ilmoitus siitä, että yritys osallistuu tarjouskilpailuun.

Reklamaatiot:
Reklamaatiot ovat ilmoituksia rakennustyön sopimuksen vastaisuudesta sekä vaatimuksia korjaustyöstä tai korvauksesta.

Viranomaismääräykset:
Yhteiskunnan taholta valvotaan rakentamista angamalla ohjeita, asetuksia, lakeja ja määräyksiä, jotka ohjaavat rakentamista.

Organisaatiorakenne ja tehtäväkuvaus:
Organisaatiorakenteen ja tehtäväkuvaukset määrittelevät projektiin päätehtävät ja niiden vastuuhenkilöt vastuu- ja raportointisuhteineen.
responsibilities and who reports to whom.

Order and progression of works: Order and progression of works refers to the order in which various work phases are performed and individual phases' progression in various parts of the project.

Organization and supervision of work: Organization and supervision of work consists of site management's daily supervisory and organizing tasks that enable work to proceed and various work phases to be completed.

Overview of project: Familiarization with the project on site and through drawings well enough to ensure that special features are taken into account in detailed examinations.

Permits and notifications: Permits and notifications to be secured and made before establishing site.

Person responsible for production: The site manager is generally the person responsible for production.

Plot: The area on which a building is to be built.

Preliminary price inquiries: Preliminary price inquiries give some idea of the price of a system unit or service - it is not, however, always binding on the party quoting the price.

Preliminary inquires: Preliminary inquires are made about subcontracts to determine the price level at the tender calculation phase or, some-
times, to aid design control.

Preliminary offers: Preliminary inquires result is preliminary offers by subcontractors which are utilized for tender calculation.

Preliminary production plans: A preliminary production plan sets the construction time, the production mode and main work methods at the tender phase.

Procurement files: Procurement files contain general price and subcontractor files and ones compiled by the company.

Procurement plan: The procurement plans sets out, for instance, the people responsible for procurements, delivery times and quantities as well as the cost target of procurements.

Production control: Production control is the general term used for the planning, coordination and supervision of site tasks and procurements.

Production-planning files: Production-planning files include general files such as the input and methods files of the building information file and files compiled by the company from previous projects.

Project documents to be filed: Calculation documents, contracts, inspection records, building-permit drawings and production plans are among the documents that are to be filed.

Project documents: Project documents comprise tender documents, the contract as well as implementation, production and complementary plans.

Ohjauksen tarpeisiin.

Ennakkotarjoukset: Ennakkokoskelytuottavat alihankkijoilta ennakkotarjoukset, joita käytetään apuna urakkakalaskennassa.

Alustavat tuotantosuunnitelmat: Alustavat tuotantosuunnitelmat määrittävät tarjousvaiheessa rakennusajamaan sekä tietynä tuotantomäärinä ja päätöyme-netelmän sijaan.

Hankintatiedostot: Hankintatiedostot sisältävät yleisesti yrityksen omat ja alihankkijatiedostojen.

Hankintasuunnitelma: Hankintasuunnitelma määrittelee mm. hankintojen vastuuhenkilöitä, toimitusajat ja -määrät sekä hankintojen kustannustavoitteen.

Tuotannon ohjaus: Tuotannonohjaus on yleisesti työmaatehtävien ja hankintojen suunnittelulille, koordinoinnille ja valvonnalle.

Tuotannonsuunnittelutiedostot: Tuotannonsuunnittelutiedostot sisältävät yleisesti tiedostot, kuten Ratu-kortiston menekki- ja menetelmätiedot, sekä yrityksen omat aikaisemmista projekteista keräämät tiedostot.

Arkistoitavat projektiasiakirjat: Arkistoitaviin asiakirjoihin kuuluvat mm. laskenta-asiakirjat, sopimukset, tarkastuspöytäkirjat, rakennuslupapiirustukset ja tuotannonsuunnitelmat.

Hankeasiakirjat: Hankeasiakirjoitukset tarjousasiakirjat, urakkasopimus, toteutus-, tuotanto- ja täydentävät suunnitelmat.
Project feedback: Documented monitoring and feedback data for the duration of the project.

Project organization: The project organization consists of the workers and organizations recruited by the main implementer for the project.

Proposed change to plans: A change proposal acquaints building design with the production viewpoint in order to allow improving implementability of plans.

Proposed change to plans: A change proposal acquaints building design with the production viewpoint in order to improve implementability of plans.

Quality plan: The quality plan is a plan for the quality control and assurance of the building project and application of the company’s quality system to the project.

Quality plan: The quality plan is a plan for the quality control and assurance of the building project and application of the company’s quality system to the project.

Readiness to start construction: Readiness to start construction exists when the plans required for starting implementation are ready and the permits and notifications required for commencement are in order.

Readiness to start construction: Readiness to start construction exists when the plans required for starting implementation are ready and the permits and notifications required for commencement are in order.

Readiness to start work phase: Readiness to start a work phase exists when the kickoff meeting has been held and the preconditions for work have been ascertained.

Readiness to start work phase: Readiness to start a work phase exists when the kickoff meeting has been held and the preconditions for work have been ascertained.

Ready-to-use building: A building that is ready to receive its future users and serve them as planned.

Ready-to-use building: A building that is ready to receive its future users and serve them as planned.

Report on work phases: The report on work phases reveals the degrees of completion of various work phases.

Report on work phases: The report on work phases reveals the degrees of completion of various work phases.

Palaute projektista: Koko projektin ajalta kerätty seuranta- ja palautetieto dokumentoituna.

Projektiorganisaatio: Projektiorganisaation muodostavat päätoteuttajan hankkeeseen rekrytoimat työntekijät ja organisaatiot.

Muutosehdotukset rakennussuunnitelmiin: Muutosehdotus antaa tuotannon näkökulman rakennussuunnitelmän, jotta suunnitelmien toteutettavuutta voitaisiin parantaa.

Laatusuunnitelma: Laatusuunnitelma on suunnitelma rakennushankkeen toteutuksen laadunohjauksesta ja -varmistuksesta sekä yrityksen laatujärjestelmän soveltamisesta työkohteeseen.

Valmius rakentamisen aloittamiselle: Valmius rakentamisen aloittamiselle saavutetaan, kun toteutuksen aloittamisen vaatimat suunnitelmat ovat valmiina sekä aloittamiseen vaadittavat luvat ja ilmoitukset ovat kunnossa.

Valmius aloittaa työvaihe: Valmius työvaiheen aloittamiselle on, kun aloituspalaveri on pidetty ja työn aloitusedellytykset on tarkastettu.

Käyttövalmis rakennus: Rakennus on valmis ottamaan vastaan tulevat käyttäjänsä ja palvelemaan heitä suunnitellulla tavalla.

Työvaiheiden tilannetiedot: Työvaiheen tilannetiedot kertovat eri työvaiheen valmiusasteen, kustannustilan-
accrued costs and how well plans have materialized at a certain point in time.

Resources: Resources are the economic, physical and mental factors of production required in the building production process.

Revised cost estimate: Cost estimate revised on the basis of indicators and experience.

Revised procurement plan: The procurement plan is initially revised to correspond to the schedules revised during the project and then, to correspond to the delivery times agreed with suppliers.

Revisions of delivery: A change makes a previously concluded contract more detailed time- and/or quantity-wise.

S

Schedules: Schedules are plans for timewise control of project implementation.

Site: The site consists of personnel facilities, site roads, machinery and equipment and interim water, electricity and telephone connections that make commencement of construction possible.

Site machinery and equipment: Site machinery and equipment include the interim water, electricity and telephone connections as well as site machinery and personnel facilities.

Site journal: the site journal is an official document where all significant site events, such as inspections, deliveries and tests as well as

teen ja suunnitelman mukaisuuden tie-
tyllä ajanhetkellä.

Resurssit: Resurssit ovat rakentamisen tuotantoprosessissa tarvittavat taloudelliset, fyysiset ja henkiset tuo-
tannontekijät.

Tarkastettu kustannusarvio: Kustan-

nusarvio, joka on tarkastettu tunnuslu-

kujen ja kokemuksen avulla.

Tarkennettu hankintasuunnitelma: Hankintasuunnitelma on tarkennettu vastaamaan ensimmä projektiin aikana tarkentuneita aikatauluja ja edelleen toimittajien kanssa sovittuja toimitus-
aikoja.

Muutokset tilaukseen: Muutos tar-
kentaa aikaisemmin tehtyä sopimusta ajallisesti ja/tai määrällisesti.

Aikataulut: Aikataulut ovat kohteen toteutuksen ajallisen ohjauksen apu-
välineeksi tehtyjä suunnitelmia.

Työmaa: Työmaa käsittää fyysisen valmiuden rakentamisen aloittamiselle eli työmaan sosiaalilaitat, työmaatiet, koneet ja kaluston sekä väliaikaiset ve-
si-, sähkö- ja puhelinlinjat.

Työmaan koneet ja laitteet: Työ-
maan koneet ja laitteet käsittävät työ-
maalle asennettavat väliaikaiset vesi-
sähkö- ja puhelinlinjat sekä työmaan kaluston ja sosiaalilaitat.

Työmaapäiväkirja: Työmaapäiväkir-

ja on virallinen asiakirja, johon tulevat kaikki merkittävät työmaan tapa-
tumat, kuten tarkastukset, toimitukset
information about ongoing works are recorded.

Special plans: Special plans consist of demolition, element installation, shuttering rotation, occupational safety, scaffolding, blasting and soil excavation and concreting and test-cube plans.

State of incomplete work phase: Degree of readiness of incomplete work phases including labour input and cost data as well as realized quality.

State of work phase: The state of a work phase refers to how far a completed or incomplete work phase has progressed quantitatively, its time-wise progress and quality.

Subcontract: A subcontract is a contract into which the main contractor enters as a client with another enterprise for implementing work or delivering goods, or both.

Suggestion for and information on corrective measures in production control: The main contractor informs the other parties about changes to plans that concern them and makes suggestion about corrective measures in production control to be decided jointly.

Technically-ready building: A building ready from the viewpoint of construction work, only inspections by the main contractor and officials and handover to client remain to be implemented before the building is taken into use.

Tender documents: Tender docu-
ments consist of an invitation to tender, a schedule of the works included in the contract and implementation plans.

Tender price and terms: The tender price and terms consist of price and other data related to implementing construction which are determined by the main implementer on the basis of tender- calculation data.

Tender: The main implementer provides the inviter of a tender information about the work he offers to do and its price which constitutes a tender.

Tenders from suppliers: Tenders submitted by subcontractors invited by the main contractor.

Transfer of data on results to production planning files: Experiences gained during the project including work-specific data on conditions, labour inputs and suppliers are transferred to production planning files for utilization in the planning of new projects.

Use instructions: Use instructions for the building systems, equipment and structural elements are compiled and submitted to the client. They describe the system and its proper use, required servicing and instructions in case of malfunctions.

Work phases to be inspected: A work phase that is completed or at a stage requiring inspection.
APPENDIX 1:
CONTENT OF PLANS AND DRAWINGS
(ACTIVITIES A41 - A45)
(Source: RT 10-10576 ... RT 10-10580)

EARTH AND FOUNDATION WORKS

Environment-protection plan
• areas to be stabilized and structures to be reinforced and applied methods
• suggested order of works
• monitoring systems

Earth-structure plan for building and yard
• detail sections of earth structures (base floors, building backfill, trenches for conduits)
• backfill soil types
• surface structure types
• transition-wedge and frost-protection types
• grain-size, compaction and bearing-capacity requirements for earth structures

Excavation and blasting scheme for building and yard
• excavation and blasting levels and tolerances
• slopes
• types of bracing and position of abutment walls
• drainage during work
• order of excavation and blasting works

Foundation plan for building ground and yard
• outline of building and bottom floors
• limitations on substructures
• soil-stabilization areas
• foundation sections of building
• level of lower ends of footings and piles
• excavation levels
• soil-stabilization details
• drainage principle during work
tasot
kaivu- ja massanvaihtotasot
pohjanvahvistusdetaljit
työnaikaisen kuivanapidon periaate

Subsurface drainage plan
• location, pipe size, material and transition wedges of subsurface drains
• subsurface-drain backfills and material requirements
• drainage wells and inspection pipes
salaojien sijainti, putkikoot, materiaalit ja siirtymäkiilat
salaojien ympäristöä ja materiaalivaatimuksia
salaojavaatemuksia ja tarkastusputket

Levelling and conduit plan for yard
• existing mapping and elevation data
• limitations on surface-structure types and transition wedges
• contour lines of levelling
• surface-drainage structures
• rainwater drainage to collector well, discharge into terrain or absorption
• other drainage of surface water
• site drainage
• location of conduits and special structures in yard
• limitations on laying of conduits and special structures
• frost protection of conduits and special structures
olemassa olevat kartoitus- ja korkeustiedot
pääallysrakennetyyppien rajaukset ja siirtymäkiilat
pinnantasauksen korkeuskäyrät
pintakuivatuksen rakenteet
sadevesiviemäröinti kokoojakaivoon saakka, maastoon purkautus tai imeytys
muu pintavesien poisto
tontialueen salaojitus
johto- ja erillisrakenteiden sijainti piha-alueella
johto- ja erillisrakenteiden perustamistaparajaotukset
johto- ja erillisrakenteiden routasuojaukset

Yard plan
• detailed use of plot
• outdoor-equipment plan
• planting scheme
• landscaping scheme
tontin yksityiskohtainen käyttö
ulkovarustesuunnitelma
istutussuunnitelma
maisemasuunnitelma

FOUNDATION STRUCTURES AND FRAME

Pile-situation plan 1:100/1:50
• position and types of piles and pile groups
• upper pile cutoff level and depth of penetration
• structural requirements for piles
paalujen ja paaluryhmien sijainti ja tyyppit
paalujen katkaisutaso ja tunkeutumissyyys
paalujen rakenteelliset vaatimukset

Piha-alueen tasaus- ja putki-johtosuunnitelma
Pihasuunnitelma
PERUSTUKSET JA RUNKO

Paalukartta 1:100/1:50
Paalukartta 1:100/1:50
Foundation layouts 1:50/1:100
- position of foundations and plinths, types and dimensions
- upper joining structures and their dimensions
- positions of piles without dimensions
- anchor bolts, starter bars and rock bolts
- essential penetrations and voids

Detail drawings of foundations
- reinforcement of typical cast-in-place structures
- sections and detail drawings of foundations 1:20/1:50
- different plinth structures
- position of thermal insulation and water- and moisture-proofings
- joining of foundations with upper structures
- scope and type of frost protection

Base-floor construction drawings
- typical reinforcements of canals, etc.
- reinforcements and details of base floor and joining beams, canals, etc.

Dimensional and reinforcement drawings of frame structures 1:50/1:100
- position, types, dimensions and materials of frame structures
- position and types of frame elements
- dimensions and reinforcements of cast-in-place structures
- non-bearing concrete and reinforced concrete structures
- joint reinforcements of element levels
- position of joints
- structural types/position
- quality and strength requirements for materials
- essential penetrations and voids
- position of expansion joints
- building-services shafts
- directions of expansion and voids
- loadings and fire ratings

Perustusten tasopiirustukset 1:50/1:100
- perustusten ja perusmuurien sijainti, tyypit ja mitat
- yläpuoliset liittyvät rakenteet ja niiden mitat
- paalujen sijainti ilman mitoitusta
- peruspultit, tartuntateräkset ja kallioankkurit
- oleelliset reiät ja varaukset

Perustusten rakennusosapiirustukset
- tyypillisten paikallavalurakenteiden raudoitus
- perustusten leikkauks- ja detailjiipiirustukset 1:20/1:50
- erilaiset perusmuurirakenteet
- lämmön-, veden- ja kosteudeneristoiden sijainti
- perustusten liittyminen yläpuolisiin rakenteisiin
- routasuojauskun laajuus ja tyyppi

Alapohjan rakennepiirustukset
- kanaalien yms. typpiliset raudoitukset, alapohjan ja siihen liittyvien palkkien, kanaalien yms. raudoitukset ja detailjit

Runkorakenteiden mitta- ja raudoituspiirustukset 1:50/1:100
- runkorakenteiden sijainti, tyyppitys, mitat ja materiaalit
- runkoelementtien sijainti ja tyyppitys
- paikallavalurakenteiden mitat ja raudoitukset
- ei-kantavat betoni- ja teräsbetonirakenteet
- elementtitasojen saumaraudoitukset
- liitosten sijainti
- rakennetyypit/sijainti
- materiaalien laatut- ja lukuusvaatimukset
- oleelliset reiät ja varaukset
- liikuntasuunnanoiden sijaintit
- LVIS-kuilut
- laajennussuunnat ja varaukset
- kuormituksit ja paloluokat
Detail drawings of frame structures 1:50/1:20
- dimensions and reinforcement of cast-in-place structures
- element drawings with schedules of accessories
- profiles and steel specifications of bearing steel structures
- main dimensional drawings of bearing wooden elements

Runkorakenteiden rakennusosapiirustukset 1:50/1:20
- paikallavalurakenteiden mitat ja raudoitus
- elementtipiirustukset tarvikeluetteloineen
- kantavien teräsrakenteiden profiilit ja teräserittelyt
- kantavien puuelementtien päämittapiirustukset

General sections of frame 1:100/1:50
- elevation of structures and surface-structure voids, prestresses
- position of main structural types

Rungon yleisleikkauspiirustukset 1:100/1:50
- rakenteiden korkeusasema ja pintarakennevaraukset, esikorotukset
- päärakenneyyppien sijainti

Frame sections and detail drawings 1:20/1:50
- joints of structures
- position of thermal insulation and water- and moisture-proofings
- joint details of prefabricated parts
- expansion-joint structures
- fire protections
- reinforcement and bracing of masonry structures

Rungon leikkaus- ja detaljipiirustukset 1:20/1:50
- rakenteiden liittymäkohdat
- lämmön-, veden- ja kosteudeneristeiden sijoitus
- valmiosien liitosdetaljit
- liikuntasaumarakenteet
- palosuojaukset
- muurattujen rakenteiden raudoitus ja tuenta

Frame-structure schedules
- precast-element schedules by main types
- profile specifications of bearing steel structures

Runkorakenteiden luettelot
- betonielementtiluettelot päätyyppittäin
- profilierittelyt kantavista teräsrakenteista

Elevation drawings 1:50/1:100
- position and types of elements
- types and position of structures
- position of joints
- essential penetrations and voids

Julkisivupiirustukset 1:50/1:100
- elementtien sijainti ja tyyppitys
- rakennetyypit ja sijainti
- liitosten sijainti
- oleelliset reiät ja varaukset

Detail drawings of facade
- reinforcement of masonry and cast-in-place structures
- element drawings with schedules of accessories
- main dimensional drawings of wooden elements

Julkisivun rakennusosapiirustukset
- muurattujen ja paikallavalurakenteiden raudoitus
- elementtipiirustukset tarvikeluetteloineen
- puuelementtien päämittapiirustukset
Sections and detail drawings of facade
• joints of structures
• attachment details of prefabricated parts
• joints, sealings and insulations
• structure types and suggestions
• profiles and joints of steel structures supporting the facade
• standard structures, attachments and bracings of facade surface materials

Julkisivun leikkaus- ja detaljipirustukset
• rakenteiden liittymäkohdat
• valmisosien kiinnitysdetaljit
• saumat, tiivistykset ja eristykset
• rakennetyypit ja rakennetyyppiviittaukset
• julkisivuatauksesta julkisivun tunnustelu

Facade schedules
• precast-element catalogues
• profile specifications of facade-supporting steel structures

Luettelot
• betonielementtiluettelot
• profilierit julkisivuatauksesta teräsrakenteista

Roof drawings 1:50/1:100
• structure types and position
• slopes and position of rainwater outlets
• ventilation
• expansion joints, compartmentation structures, penetrations
• catwalks, railings
• penetrations for hatches, etc.

Vesikattopirustukset 1:50/1:100
• rakennetyypit ja sijainti
• kallistukset ja sadevesikaivojen sijainti
• tuuletus
• liikuntasammat, palokatkot, läpivienit
• kulkusillat, kaiteet
• luukkujen yms. Läpivienit

Sections and detail drawings of roof 1:20/1:50
• joints of structures 1:5/1:10
• water-proofing details
• eaves details
• ventilation details
• details of penetrations and attachments
• details of skylights and glazed structures

Vesikaton leikkaus- ja detalji-pirustukset 1:20/1:50
• rakenteiden liittymäkohdat 1:5/1:10
• vedeneristysdetaljit
• räystäsdetaljit
• tuuletusdetaljit
• läpivientien ja kiinikkeiden detaljit
• kattoikkunoiden ja valokatteiden rakennedetaljit

COMPLEMENTARY INTERNAL STRUCTURES, FIXTURES AND EQUIPMENTS
Detail drawings of complementary structures
• type drawings of working platforms, railings, etc.
• loading schemes and bracings of glazed roofs

TÄYDENTÄVÄT SISÄOSAT, VARUSTEET JA LAITTEET

Details of partition walls
Täydentävien rakenteiden rakennusosapiirustukset
• hoitotosojen, kaiteiden ym. tyyppipiirustukset
• lasikattojen kuormituskaaviot ja tukirakenteet

Väliseinädetaljit
• structural joints and bracings
• expansion joints
• wall reinforcements
• bracings of apertures

Types of complementary structures 1:10
• base floor, intermediate floor and roof structures
• partition and external wall structures

Sections and detail drawings of complementary structures 1:10/1:5
• fire-, thermal-, sound-, water- and moisture-proofing
• attachment and bracing of special doors and windows
• attachment of railings and fire ladders

INTERNAL SURFACES

Schedule of finishes
• surface materials
• surface-material colours
• trademarks of surface materials

BUILDING SERVICES

HVAC-implementation-plan documents
• work specification
• general layout
• layouts, sections, details and elevations
• type room drawings
• system diagrams
• equipment schedules
• material specifications

Implementation-plan documents for information system
• work specification
• general layout
• layouts
• type room drawings
• system diagrams

TÄYDENTÄVIENTEN RAKENTEIDEN RAKENNETYYPIT 1:10
• ala-, väli- ja yläpohjarakenteet
• väliseinä- ja ulkoseinäararakenteet

TÄYDENTÄVIENTEN RAKENNETEIDEN LEIKKAUTUKSET 1:10/1:5
• palo-, lämmön-, äänen-, veden- ja kosteudeneristys
• erikoisovien ja -ikkunoiden kiinnitykset ja tuennat
• kaiteiden ja palotikkaiden kiinnitykset

SISÄPINNAT

Huoneselostus
• pintamateriaalit
• pintamateriaalien värit
• pintamateriaalien tuotemerkit

TALOTEKNIKKA

LVI- toteutussuunnitelmansuunnitelma-asiaakirjat
• työselitys
• asemapiirustus
• pohjapiirustukset, leikkaukset, detaliot ja julkisivut
• tyyppihuonepiirustukset
• järjestelmäkaavio
• laiteluettelot
• materiaalierttely

Tietojärjestelmän toteutussuunnitelma-asiaakirjat
• työselitys
• asemapiirustus
• pohjapiirustukset
• tyyppihuonepiirustukset
• järjestelmäkaavio
• equipment schedules
• diagrams and tables of electric interlockings
• program and report catalogues
• control diagrams including operating principles
• control and monitoring point lists
• material specifications
• point-position drawings
• wire-routing drawings
• wiring and grouping drawings
• assembly drawings of distribution boards and switch cabinets
• installation drawings of door electrification
• document-preparation instructions for contractors and equipment suppliers
• complementing plan with equipment and connection data into working drawings

Implementation-plan documents for electrical system
• work specification
• general layout
• layouts, sections, details and elevations
• type room drawings
• system diagrams
• equipment schedules
• material specifications
• point-position drawings
• wire-routing drawings
• wiring and grouping drawings
• assembly drawings of distribution boards and switch cabinets
• installation drawings of door electrification
• document-preparation instructions for contractors and equipment suppliers
• complementing plan with equipment and connection data

• laiteluettelot
• sähköisten lukitusten kaaviot ja taulukot
• ohjelma- ja raporttiluettelot
• säättökaaviot toimintaselostuksineen
• säättö-, ohjaus- ja valvontapisteluuettelot
• materiaalierittelyt
• pistesijoituspiirustukset
• johtotiepiirustukset
• johdotus- ja ryhmityspiirustukset
• keskusten ja kytentäkaappien kokoonpanopiirustukset
• ovisähkööistyksen asennusohjepiirustukset
• dokumenttiohje urakoitsijoita ja laitetoimittajia varten
• suunnitelman täydennys laite- ja kytentätiedoilla työpiirustuksiksi

Sähköjärjestelmän toteutussuunnitelma-asiakirjat
• työselitys
• asemapiirustus
• pohjapiirustukset, leikkaukset ja detaljit ja julkisivut
• tyypihuonepiirustukset
• järjestelmäkaaviot
• laiteluettelot
• materiaalierittelyt
• pistesijoituspiirustukset
• johtotiepiirustukset
• johdotus- ja ryhmityspiirustukset
• keskusten ja kytentäkaappien kokoonpanopiirustukset
• ovisähkööistyksen asennusohjepiirustukset
• dokumentointiohje urakoitsijoita ja laitetoimittajia varten
• valaisinerittelyt, erikoisvalaisinten piirustukset
• sähköisten lukitusten kaaviot ja taulukot
• suunnitelman täydennys laite- ja kytentätiedoilla