Tulosta Tulosta Lähetä linkki Bookmark and Share

Suomalainen teknologia selvittämään maailmankaikkeuden alkua

27.04.2009


Euroopan avaruusjärjestö laukaisee toukokuussa kaksi tiedesatelliittia, joissa suomalaisilla yrityksillä ja tutkijoilla on merkittävä osuus. Planck- ja Herschel-satelliittien avulla selvitetään maailmankaikkeuden rakennetta ja tähtien ja galaksien alkuperää.

Suomalaiset ovat toimittaneet Planck ja Herschel -satelliitteihin vaativia tutkimuslaitteita ja satelliittiteknologiaa. ESA laukaisee satelliitit samalla kantoraketilla Kouroun avaruuskeskuksesta Ranskan Guyanasta.

"Planck on suomalaisittain yksi suurimmista avaruusprojekteista, joka on edellyttänyt yrityksiltä ja tutkimusryhmiltä korkealuokkaista osaamista", kertoo teknologiajohtaja Kimmo Kanto Tekesistä.

Planck kuuntelee kosmista taustasäteilyä maailmankaikkeuden alusta

Planck-satelliitti kartoittaa kosmista taustasäteilyä, joka näyttää, miten maailmankaikkeus 14 miljardia vuotta sitten alkoi muodostaa galakseja, tähtiä ja planeettoja. Lisäksi Planckin avulla tutkitaan muita radiosäteilyn lähteitä kuten galakseja ja Linnunradan tähtien syntyalueita. 

Avaruustutkijat Helsingin yliopiston observatoriosta ja fysiikan laitokselta, TKK:n Metsähovin radiotutkimusasemalta ja Tuorlan observatoriosta Turusta hyödyntävät Planckin aineistoa tutkimustyössään. Tutkijoiden panosta on tarvittu sekä Planck-satelliittin suunnitteluun että sen tiedeohjelman toteuttamiseen.

Suomesta maailman herkintä radiotekniikkaa

Planckissa on mukana maailman herkintä radiotekniikkaa. Satelliitin 70 gigahertsin radiovastaanotin on suunniteltu ja rakennettu Suomessa. Työtä johti VTT:n ja TKK:n MilliLab. Rakentamisesta vastasi DA Design Oy.

”Työn vaativuus takasi sen, että saimme arvokasta osaamista, jota voidaan hyödyntää myös muissa sovelluksissa”, sanoo VTT:n teknologiajohtaja Jussi Tuovinen, joka on vastannut Suomen Planck-hankkeen laitteistojen rakentamisesta. Teknologiaa voidaan käyttää esimerkiksi turvatarkastuksiin ja kulkuneuvojen havaitsemiseen sumun läpi. Lisäksi se sopii tarkkoihin pilvitutkiin ja tulevaisuuden tietoliikennesovelluksiin.

Herschelin pääpeili hiottiin Piikkiössä

Herschel on pitkäaaltoisella infrapuna-alueella toimiva avaruusobservatorio, jonka avulla tutkijat voivat selvittää esimerkiksi tähtien syntymekanismeja. Suomalainen Opteon Oy on kiillottanut satelliitin pääpeilin. Peili on maailman suurin ja teknisesti vaativin piikarbidista tehty avaruuspeili.

Space Systems Finland on kehittänyt Herschelin ja Planckin ohjausohjelmiston, joka vastaa satelliitin toimintojen ohjauksesta, esimerkiksi vikojen korjauksesta ja lämmönsäätelystä. Patria suunnitteli ja valmisti Herschel-satelliitin kryostaatin ohjausyksikön, joka ylläpitää havaintolaitteiden lämpötilaa mahdollisimman lähellä absoluuttista nollapistettä.

Suomalaisten osuus Planckin tiedeinstrumenttien kehitystyössä ja teknologiatoimituksissa on noin 14,5 miljoonaa euroa. Tekes vastaa Suomessa ESA-toiminnan koordinoinnista ja rahoituksesta. Suomen Akatemia on rahoittanut suomalaisten tutkijoiden Herscheliin ja Planckiin liittyvää tieteellistä tutkimusta yli 2,5 miljoonalla eurolla.

Liätietoja:

Seuraa Herschelin ja Planckin laukaisuvalmisteluja:

Suomalaiset laitteet Planck- ja Herschel-satelliiteissa:

MilliLab & DA-Design: Herkkä, matalataajuinen radiovastaanotin

Euroopan avaruusjärjestö ESA:n Planck-satelliitin laitteistoon kuuluva äärimmäisen herkkä 70 gigahertsin radiovastaanotin kehitettiin ja valmistettiin Suomessa. Vastaanottimella tullaan mittaamaan varhaisesta maailmankaikkeudesta peräisin olevaa kosmista taustasäteilyä. Työtä johti VTT:n ja TKK:n MilliLab. Vastaanottimen rakentamisesta ja testaamisesta vastasi suomalainen yritys DA-Design Oy.

Hankkeessa kehitettyä teknologiaa voidaan käyttää myös turvatarkastuksiin ja esimerkiksi kulkuneuvojen havaitsemiseen sumun läpi. Tämän lisäksi tekniikka sopii tarkkoihin pilvitutkiin ja tulevaisuuden tietoliikennesovelluksiin. Planckissa on 1,5-metrinen radiokaukoputki ja kaksi instrumenttia, joista toinen mittaa matalampia taajuuksia ja toinen korkeampia. Suomalaiset suunnittelivat ja rakensivat matalataajuisen vastaanottimen vaativimmat osat. Niiden valmistaminen edellytti useita uusia teknisiä ratkaisuja.

Periaatteessa vastaanotin toimii kuin kideradio, selittää VTT:n teknologiajohtaja Jussi Tuovinen. ”Kosmisen taustasäteilyn taajuus on kuitenkin miljoona kertaa suurempi kuin tavallisen radiolähetyksen. Niinpä lanka-antennin sijasta käytetään lautasantennia eli radiokaukoputkea ja kiteen sijasta diodeja ja vahvistimia, joilla signaali vahvistetaan 500 000 kertaiseksi.”

Lisätietoa:

http://virtual.vtt.fi/virtual/millilab/pages/Planck_MilliLab.htm

www.da-design.fi

www.vtt.fi

Space Systems Finland Oy: ohjelmisto satelliitin ohjaukseen

Space Systems Finland on kehittänyt Herschel ja Planck satelliittien keskustietokoneyksiköiden sovellusohjelmiston, joka vastaa satelliitin useimpien toimintojen ohjauksesta ja valvonnasta, esimerkiksi vikojen havainnoinnista ja korjauksesta, lämmönsäätelystä ja resurssien hallinnasta. Ohjelmistolla on keskeinen merkitys Herschel- ja Planck- satelliittimissioiden onnistumisessa.

Satelliittien lentorata on 1,5 miljoonan kilometrin päässä maasta ja näkyvyyttä maa-asemalle on vain kaksi tuntia päivässä, joten "huoltoikkuna" satelliitin ylläpitoon on erittäin kapea ja riskialtis tekijä ohjelmistosuunnittelun kannalta. Ohjelmiston kehitystyön teki haastavaksi myös tiukat kriteerit toiminnan luotettavuudesta ja reaaliaikaisuudesta. Perusteellisella testikampanjalla varmistettiin ohjelmistolle asetetut laatuvaatimukset. Ohjelmistoa varten rakennettiin automatisoitu testausympäristö, joka mahdollisti jatkuvan testien ajamisen ajasta riippumatta. Testaus vaati suurimman osan ohjelmiston kehitystyöresursseista, mikä on tyypillistä kriittisille järjestelmien kehityksessä. Herschel ja Planck -projekti alkoi Space Systems Finlandissa vuonna 2003 ja valmistui kesällä 2008. Yritys on suomalainen kriittisten ohjelmistojen valmistamiseen, testaukseen ja laadunvalvontaan erikoistunut ohjelmistotalo, joka on perustettu vuonna 1999. Työntekijöitä on 36.

Lisätietoa: www.ssf.fi

Opteon Oy: Herschelin peilin kiillottaminen

Herschelin peili on maailman suurin piikarbidi- ja avaruuspeili. Se on äärimmäisen kevytrakenteinen: peilipinnan paksuus on vain 2,5 mm ja koko peilin paino 250 kg. Kovaa piikarbidia voidaan työstää vain timantilla. Peilin hionta ja kiillotus kestivät 8 kuukautta. Huhtikuussa 2005 valmistunut peili täytti mittauksissa kaikki asetetut vaatimukset. Alan asiantuntijoiden luonnehdinta siitä on: ”Epäilemättä vaativin avaruuspeili mikä maailmassa on koskaan valmistettu”.

Herschel-avaruusobservatorio oli alun perin ESA:n ja NASA:n yhteishanke, jossa NASA:n osuus oli teleskoopin pääpeilin toimitus. Kun hiilikuitutekniikalla valmistettu koepeili ei täyttänyt asetettuja vaatimuksia, NASA luopui hankkeesta. Samanaikaisesti Euroopassa kehitettiin piikarbidipeilien (SiC) valmistusta. ESA:n kartoituksessa eurooppalaisista yrityksistä vain Opteon Oy:lla oli käytössä tällaisten peilien kiillottamisessa tarvittu teknologia. Opteon sai 1998 kiillotettavakseen piikarbidista valmistetun 1,35 metrin läpimittaisen Herschelin koepeilin. Peili täytti vaatimukset ja Herschelin peilit päätettiin tehdä piikarbidista.

Opteon sai kiillotettavakseen myös Herschelin 3,5 metrin läpimittaisen pääpeilin. Työtä varten rakennettiin uudet tilat ja hiomakone. Äärimmäisen lyhytpolttovälisen parabolisen peilin asfäärisyys (poikkeama pallopinnasta) on ennätyksellisen suuri, minkä vuoksi oli kehitettävä myös uudet menetelmät ja laitteet peilin muodon mittaamiseksi.

Lisätietoa: www.opteon.fi

Patria: Cryostat Control Unit

Patria vastasi Herschel-satelliitin Cryostat Control Unitin (CCU) suunnittelusta ja valmistuksesta. CCU ylläpitää infrapunateleskoopin lämpötilaa mahdollisimman lähellä absoluuttista nollapistettä, mahdollistaen erittäin tarkan havainnoinnin ilman häiriöitä satelliitin omasta lämpösäteilystä. Hanke on hyvä esimerkki perinteisestä satelliittien rakentamisen arvoketjusta, jossa monipuolinen teollinen toiminta hyödyttää perustutkimusta ja tieteen tekemistä ja päinvastoin. Tiedeyhteisö ei olisi päässyt hyödyntämään satelliittien tutkimustietoa ilman teollisuuden osuutta satelliitin rakentamisesta, toisaalta myöskään ilman tieteellistä hyötyä satelliittia ei olisi koskaan rakennettu.

Lisätietoa: www.patria.fi

Avaruustutkimus Planck- ja Herschel -tiedesatelliittien avulla

Euroopan avaruusjärjestön (ESA) Planck-satelliitin tehtävä on kartoittaa kosminen taustasäteily aikaisempaa tarkemmin. Kosminen taustasäteily on mikroaaltoja, jotka tulevat maailmankaikkeuden kaukaisista osista. Niin kaukaa että säteily on ollut matkalla lähes koko maailmankaikkeuden 14 miljardin vuoden iän. Siksi säteily näyttää meille maailmankaikkeuden sellaisena kuin se oli hyvin nuorena, noin 400 000 vuoden ikäisenä.

Nuoressa maailmankaikkeudessa aine oli hyvin tasaisesti jakautunut, ja aineen tiheydessä oli vain pieniä, noin kymmenestuhannesosan, vaihteluita. Planck-satelliitin tavoite on mitata näiden tiheysvaihteluiden ominaisuudet mahdollisimman tarkasti, jotta voisimme niistä päätellä mikä fysikaalinen prosessi synnytti ne. Alkuperäisistä tiheysvaihteluista, ”galaksien siemenistä”, kasvoi painovoiman vaikutuksesta vuosimiljardien kuluessa maailmankaikkeuden nykyinen rakenne, jossa aine on keräytynyt galakseiksi, tähdiksi ja planeetoiksi. Eräs kosmologian, maailmankaikkeuden rakenteen ja historian tutkimuksen, keskeisistä kysymyksistä on, mikä synnytti nämä tiheysvaihtelut.

Helsingin yliopiston fysiikan laitoksen sekä Fysiikan tutkimuslaitoksen (HIP) tutkijat ovat Planck-projektissa keskeisissä tehtävissä mm. koostettaessa Planckin havainnoista säteilyn eri aallonpituuksia vastaavia taivaan karttoja. Kartanteossa käytetään heidän Planck-satelliittia varten kehittämäänsä Madam-tietokoneohjelmistoa. Alkuperäisten tiheysvaihteluiden ominaisuuksissa heitä kiinnostaa mm. se olivatko kaikkien hiukkaslajien tiheysvaihtelut samanlaisia, vai oliko niissä hiukkaslajien välisiä eroja. 

Kaikki avaruudesta tuleva mikroaaltosäteily ei ole peräisin varhaisesta maailmankaikkeudesta. Myös monet taustasäteilyn edessä olevat kohteet säteilevät radioaalloilla. Erottaakseen kosmisen säteilyn ja muut kohteet toisistaan, Planck mittaa taivaan radiosäteilyn yhdeksällä eri aallonpituudella. Siksi se tulee havaitsemaan valtavan määrän taustasäteilyä lähempänä olevia radiosäteilyn lähteitä kuten galaksijoukkoja ja aktiivisia galakseja sekä omassa Linnunradassamme sijaitsevia tähtien syntyalueita.  Näistä kohteista saadaan samalla paljon uutta tietoa korkeilla radiotaajuuksilla, joilla ei taivasta ole aikaisemmin kartoitettu.

Tuorlan observatoriossa (Turun yliopiston fysiikan ja tähtitieteen laitos) ja Helsingin yliopiston Observatoriossa tutkitaan Planck-satelliitin avulla valtavia, jopa satojen galaksien muodostamia järjestelmiä, galaksijoukkoja. Näitäkin isompia galaksiryppäitä ovat superjoukot, jotka ovat maailmankaikkeuden suurimpia rakenteita. Vain 5% maailmankaikkeuden koostumuksesta on tavallista, näkyvää ainetta. Puolet tästä näkyvästäkin aineesta on kuitenkin kadoksissa, sitä ei siis ole voitu tähän mennessä havaita. Tutkijat ovatkin ehdottaneet, että merkittävä osa siitä voisi piilotella kaasumaisessa muodossa superjoukoissa. Kun kosminen mikroaaltotaustasäteily kulkee galaksijoukon läpi, se saa energiaa galaksijoukon kuuman kaasun hiukkasilta. Planck havaitsee taustasäteilyn vääristymän, joka sekä kertoo kaasun koostumuksesta ja jakaumasta että auttaa löytämään myös ennestään tuntemattomia galaksijoukkoja. Superjoukkoihin liittyvä Planck- tutkimus Tuorlan obseratoriossa tehdään tiiviissä yhteistyössä Tarton observatorion kosmologian ryhmän kanssa.

Metsähovin radiotutkimusaseman (TKK) tutkijat ratkovat Planck-satelliitin havaintojen avulla kaukaisten aktiivisten galaksinytimien, kvasaarien, arvoituksia. Kvasaarin keskustassa lymyää supermassiivinen musta aukko, joka yhdessä miltei valonnopeudella etenevien plasmavirtausten kanssa tuottaa rajuja säteilypurkauksia. Planck-satelliitin ainutlaatuisen kattavat korkeiden radiotaajuuksien havainnot siitä kuinka kvasaarien säteilypurkaukset syntyvät ja kehittyvät, antavat vinkkejä kuinka jättimäinen musta aukko tuottaa sen huikean energiamäärän, jonka ansiosta kvasaarien säteily on niin voimakasta että ne näkyvät kirkkaina kauas, miljardien valovuosien päähän. Metsähovissa on Planck-satelliittia varten myös kehitetty uudenlainen Quick Detection System -ohjelmistopaketti, jonka avulla Metsähovin tutkijat pääsevät ensimmäisinä maailmassa hyödyntämään Planck-satelliitin tuottamia tieteellisiä havaintoja.

Helsingin yliopiston Observatorion tutkijat tulevat käyttämään Planck-satelliitin havaintoja tähtien synnyn mekanismien selvittämiseen omassa Linnunradassamme. Tähdet syntyvät tähtienvälisissä kaasupilvissä, kun pilvien ytimet romahtavat kokoon painovoiman vaikutuksesta. Syntyprosessin alkuvaiheiden tutkiminen on kuitenkin osoittautunut hyvin vaikeaksi, koska pilviytimet ovat aluksi erittäin kylmiä. Niiden lämpötila on vain kymmenisen astetta absoluuttisen nollapisteen yläpuolella. Planck tulee mullistamaan tähtien synnyn alkuvaiheiden tutkimuksen, koska sen mittausten avulla voidaan luoda ensimmäinen kattava luettelo Linnunradan kylmistä pilviytimistä. Herschel-satelliitilla tehdyt lisähavainnot puolestaan mahdollistavat pilviytimien sisäisen rakenteen määrittämisen. Yhdessä tietokonemallien kanssa mittaukset auttavat ymmärtämään miten pilviytimet muodostuvat ja kehittyvät ja miten tähdet syntyvät.

Lisätietoa:

Helsingin yliopiston Observatorio
www.astro.helsinki.fi
http://wiki.helsinki.fi/display/PlanckHerschel

Helsingin yliopiston fysiikan laitos:
www.physics.helsinki.fi/
www.helsinki.fi/~tfo_cosm/tfo_planck.html

Fysiikan tutkimuslaitos (HIP)
www.hip.fi/index_fin.html

Metsähovin radiotutkimusaseman Planck-verkkosivut
www.metsahovi.fi/quasar/planck/index.htm

Tuorlan Observatorio (Turun yliopiston fysiikan ja tähtitieteen laitos)
www.astro.utu.fi/index.fin.shtml