Metal recovery from low grade ores and side streams

Mineral Economy Stakeholder Seminar
November 8, 2016
Päivi Kinnunen, Research Team Leader
Metal recovery potential

Currently economic reserves

Known uneconomic reserves

Low-grade ores, tailings, metallurgical wastes etc.

Unknown reserves

Technology development potential

Exploration potential
Low-grade and complex resources in focus

PROCESS DEVELOPMENT AND MODELLING

Metal extraction → Pre-treatment → Metal recovery

INFRASTRUCTURE DEVELOPMENT

EFFICIENT RECOVERY OF METALS FROM

- Sulphidic ores
- Oxidic ores
- Tailings
- Industrial sidestreams
- Consumer goods
Leaching of low grade materials
-
Examples

- Low grade polymetallic deposits
- Vehicle shredder residue
- Mine tailings
- Phosphorous ores and wastes
- MSWI bottom ash:
 - 0,47% Cu
 - 0,38% Zn
 - 0,03% Ni
 - 0,04% Cr
- Mobile phone PCB:
 - 80-1000 ppm Au
 - 110-3300 ppm Ag
 - 10–27% Cu, 1,5–7% Al, 1–8% Fe
Work towards industrial implementation: Efficient recovery of metals from tailings

ECOTAIL PROJECT

- 2016 - 2018
- Large amounts of metals left in tailings
- Generally hazardous waste due to metal content
- No need for excavation and grinding
- Reduced risk for acid mine drainage
- Additional source of revenue
Processing of Jarosite waste

- Jarogain project
- Pre-feasibility study for a plant processing 400 000 t/y jarosite

<table>
<thead>
<tr>
<th>Component</th>
<th>Content</th>
<th>Annual production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>3%</td>
<td>12 000 t</td>
</tr>
<tr>
<td>Zn</td>
<td>2%</td>
<td>8 000 t</td>
</tr>
<tr>
<td>Ag</td>
<td>150 g/t</td>
<td>60 000 kg</td>
</tr>
<tr>
<td>Au</td>
<td>0,5 g/t</td>
<td>200 kg</td>
</tr>
<tr>
<td>In</td>
<td>100 g/t</td>
<td>40 000 kg</td>
</tr>
<tr>
<td>Ga</td>
<td>40 g/t</td>
<td>16 000 kg</td>
</tr>
<tr>
<td>Fe</td>
<td>15%</td>
<td>60 000 t</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td></td>
<td>86 000 t</td>
</tr>
</tbody>
</table>
METGROW+: METAL RECOVERY FROM LOW-GRADE ORES AND WASTES PLUS

- 4 years (1.2.2016 - 31.1.2020)
- 7.9 M€, 19 partners from 9 member states
EUROPEAN UNION
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690088.
FOUR SELECTED LOW-GRADE RESOURCE FAMILIES

Material streams in METGROW+ project: yearly production rates in the EU

- **Low grade ores**
 - 2,000,000 tonnes/year
 - Estimated concentration:
 - Cobalt: 0.08%
 - Nickel: 1.3%

- **Fine grained landfilled sludges**
 - 1,000,000 tonnes/year
 - Elements:
 - Chromium: 4.0%
 - Nickel: 1.6%

- **Iron rich sludges**
 - 500,000 tonnes/year
 - Elements:
 - Copper: 29%
 - Zinc: 29%
 - Lead: 82%
 - Gallium: 0.005%
 - Arsenic: 0.001%
 - Sb: 0.05%
 - Sn: 0.001%

- **Fayalitic slags**
 - 2,950,000 tonnes/year
 - Elements:
 - Copper: 29%
 - Lead: 82%
 - Zinc: 29%
 - Gallium: 0.005%
 - Arsenic: 0.001%
 - Sb: 0.05%
 - Sn: 0.001%

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 690088.
Primary and secondary resources containing base and critical metals

- Low grade ores & tailings
 - METGROW+: laterites
- Sludges
 - METGROW+: goethite/jarosite & Cr-rich sludges (stainless steel)
- Slags & dusts
 - METGROW+: fayalitic slags

Pretreatment (WP2)

Metal extraction (WP3)

Metal recovery (WP4)

Matrix conversion (WP5)

1. comminution beneficiation
2. physical separation
3. hydroflex
4. bio-leaching
5. biosolvo
6. plasma-pyro
7. physicochem
8. biosorption & precipitation
9. (bio)electrowinning

10. scm
11. geo-pol
12. others

Residue matrix valorisation

“Apart from the metal recovery, METGROW+ will create additional value by the valorisation of the matrix material”
TECHNOLOGY FOR BUSINESS