National MEMS Technology Road Map

A Synthesis of Questionary Responses and Expert Meetings - 14.6.2011

Toni Mattila & Mervi Paulasto-Kröckel
MEMS Technology Roadmap – Targets

• Select focus areas and direct more research resources on those
• Generate new long term growth opportunities for the Finnish MEMS/sensor cluster
 – Includes new opportunities for start ups/spinn offs
• Position Aalto/VTT as an internationally leading research area in MEMS and sensors, and attract best talent to Finland
Status of the Work – 14.6.2011

• The questionnaire was sent to 41 Finnish companies
 – First submission on the end of November
 – Second submission early January

• Response ratio was 37 %

• Analysis of the results
 – First workshop on 28.1.2011: overall review of the responses
 – Second workshop on 7.2.2011: synthesis of the results
 • Research review
 – Third workshop on 3.3.2011: synthesis of the results 1
 • Commercial review
 – Fourth workshop on 19.4.2011: synthesis of the results 2
 – Fifth workshop on 27.5.2011: focus areas for the future
 – Publication of the Roadmap: 14.6.2011 at the 7th Eemeli Workshop
Focus Areas in Materials

- Use will increase: piezoelectric, allotropes of carbon (CNT, graphene), SMA/MSM
- Use will diminish: glass

2011

- **Piezoelectric** materials on Si
- **Ceramic** materials in MEMS
- **Polymers** materials on Si
- **Carbon Nanotubes** on Si
- **Shape Memory Alloys / Magnetic Shape Memory materials** on Si
- **Graphene** on Si

2015

- **Piezoelectric** materials in MEMS
- **Ceramic** materials in MEMS
- **Polymers** materials in MEMS
- **Carbon nanotubes** on Si / CNTs utilized in MEMS
- **SMA/MSM** on Si / SMA/MSM utilized in MEMS
- **Graphene** on Si / Graphene utilized in MEMS

2020

- **SMA/MSM** in MEMS
- **Graphene** in MEMS

Aalto University
School of Science and Technology

VTT
Focus Areas in the Development of Enabling Technologies

- Metal Bonding
- Laser Direct writing
- ALD (e.g. for TSVs)
- CMOS post processing MEMS
- SOI (cost pressure) → Low Cost SOI
- Surface MEMS
- Roll-to-roll processing
- Porous Silicon
- Thin film processing of new materials
e.g. graphene, shape memory alloys

2011 2015 2020
Emerging MEMS Devices

3-axial gyroscope
multi-directional microphone
color micro-display
micro-fluidistics
tunable filters
tunable capacitor
tunable inductor

tunable capacitor
atomic oscillators
microbolometer

vibration energy harvesting
image projection

solar / RF energy harvesting
thermoelectric energy harvesting

cryogenic cooler
adjustable optical lens

Today In the near future In the long run

cryogenic cooler

fuel cell
responsive drug delivery

Aalto University School of Science and Technology
Packaging and Integration

Wafer Level Packaging of MEMS
- Si Capped WLP
- eWLP
- Metal wafer bonding
- TSVs

3D Stacked WLP MEMS/IC
- MEMS on CMOS
- Through encapsulant vias
- “sensor fusion”
- “responsive systems”

Plastic Packaging (e.g. LGA)
- Fan-out WLP

Over Molded and Capped Pkng

Ceramic Pkng

2011 2015 2020
National MEMS Roadmap – Focus Areas

Recommendation of national focus areas of R&D:

- Next Generation 3D Integration of MEMS based Systems
- Functional Materials in MEMS based Systems
- MEMS based Biomedical sensor/actuator systems
1. Markets or application areas

- This year:
 - Industrial: 8 of the respondents
 - Consumer: 6 of the respondents
 - Medical: 3 of the respondents

- In the future / in the long run:
 - Market positions are expected to remain stable.
 - Few respondents indicated plans of expansion to consumer or to medical markets but position in the existing markets still stable.
 - “We try to follow markets and penetrate into emerging profitable areas.”
2. Changes in customer expectations

• Customer expectations today:
 – *Primarily*: higher quality and lower cost
 – *Also*: higher volumes, and faster time-to-market; stable market growth

• Customer expectations in near future (next 5 years):
 – *Primarily*: even lower cost, higher volumes, and faster time-to-market; fast market growth
 – *Also*: higher levels of integration (not only in MEMS device level but also on the system/product level) and new technologies / technological improvements

• Customer expectations in the long run (2020 and beyond):
 – New functions and applications enabled by MEMS
 – New technologies (merger of CMOS and MEMS)
 – Competition in the markets will grow
 – More in-depth knowhow
3. Drivers for the adoption of MEMS techn.

- **Today:**
 - *Primarily:* low cost of devices
 - *Also:* small dimensions and improved performance of devices (e.g. accuracy, lower power consumption)

- **In the near future** *(within the next 5 years)*
 - *Primarily:* low cost and improved performance as before
 - *Also:* Integration of MEMS with other technologies (healthcare, ubiquitous sensors)

- **In the long run** *(2020 and beyond)*
 - Ubiquitous sensors
 - Sensor fusion
 - More intelligence at the sensor level ⇔ “Intelligent fully integrated devices”
 - Near field communication
4. Infrastructure and support needs for R&D

• **Today**
 – Infrastructure:
 Primarily: prototyping
 Also: lithography, etching, poly filling, surface micromachining
 – Support:
 Primarily: simulation
 Also: platform to meet “players in the field”

• **In the near future** (within the next 5 years)
 – Infrastructure:
 Primarily: design, prototyping, foundry
 Also: polymer dotting, gas mixtures, laser drilling, TSV/TGS/TCV
 – Support: **MEMS Center of Excellence in Otaniemi**

• **In the long run** (2020 and beyond)
 – Infra: MID line
 – Support: graphene processing, CNT manufacturing
5. Needs regarding education and expertise

• Today:
 – Two types
 • *Experts*: specific areas from materials to processing; from MEMS design to verification (good knowledge in physics)
 • *Multidisciplinaries*: People with interdisciplinary view; focus on system level

• In the near future:
 – More emphasis on system integration and MEMS software
 – Good knowledge in physics
 • Materials and processing
 • Electronics
 • Nanoscale and semiconductor physics
 – Quantum effects
 • Modeling

• In the long run:
 – Requirements not much different
6. Emerging MEMS based devices

- Majority of the respondents described improved versions of existing MEMS devices:
 - **Consumer / industrial markets**
 - Devices with better accuracy
 - E.g. different kinds of physical sensors, chemical sensors, silicon timing circuits
 - Devices with low power consumption
 - Self-operational sensor networks
 - Systems with energy harvesting capability
 - **Bio-medical markets**
 - Personal health monitoring systems ("a megatrend of the future")
 - Lab-on-chip
 - Responsive bioMEMS (combined sensors and actuators)
 - Devices and applications:
 - Microfluidistics (e.g. micro-pumps and micro-reservoirs) for drug delivery
 - Micro-needles
 - Microbolometers (devices for measuring energy of incident electromagnetic radiation)
 - Graphene based chemical sensors
7. Functional limits of MEMS devices

- **Accelerometers**: accuracy (high-end), “sensitivity/cost” (low-end)
- **RF switches**: reliability, cost of fabrications
- **Gyroscopes**: current consumption, dynamic range, sensitivity, accuracy, cost
- **Chemical sensors**: expensive to manufacture
- **Thermopiles**: low power efficiency, costly to manufacture
- **Photometers**: wavelength range too narrow
- **FPI**: wavelength range narrow, high tuning voltage
- **IR emitters**: stability over time, power consumption, expensive to manufacture
- **Silicon oscillators**: thermal stability
- **Gas or fluid analysis**: lack of materials or manufacturing technologies
8. System development in MEMS applications

System development was seen as a very important area in future development. Here are some comments:

- “New unforeseeable applications require the whole detection and information chain to be on the same technological level”

- “System development will have bigger business potential than MEMS device manufacturing”

- “Active MEMS functionality together with integrated CMOS control logic and analog electronics”

- “In future this [system development] is essential”; “Pure MEMS is nothing”
9. Reliability challenges of current MEMS devices

• From the **use environment** point of view:
 – Mechanical shock impacts and vibrations
 – Rapid changes of temperature
 – Moisture and contaminations; corrosion

• From **processing** point of view:
 – Detection of defects caused during manufacturing:
 • Weak bond interfaces
 • Structural defects (voids in SOI)
 – High temp. deposition of silicon structures

• From the **device** point of view:
 – Materials stability
 – Biocompatibility of medical MEMS applications (medical device standards and regulations of authorities)
10. Reliability challenges of future devices

• Detection of failures modes and their root causes
 – How to differentiate issues arising from different sources (material, device processing, final assembly etc.)

• Modeling of reliability
 – Finding a suitable lifetime models becomes more challenging when approaching nano-scale dimensions

• Packaging
 – Combination of IC packaging and more sensitive MEMS devices is real challenge to mechanical reliability and humidity resistance.

• Reliability assurance of device level software
 – Challenges emphasized at design phase testing
11. Improvements in methods of reliability evaluation

- Accelerated lifetime tests
 - Tests should take better into account unique characteristics of different MEMS devices
 - Methods for device level evaluation are relatively developed; development of evaluation methods should be focused on
 - System level tests (lack of design specifications)
 - Wafer level tests
 - Die level tests

- Methods of failure analyses
 - Methods that support identification of root cause (e.g. from material, device processing, final assembly…)
 - Ways to test small gaseous leaks

- Methods of reliability simulation
 - More comprehensive (multi-physics) simulation tools are needed
12. Materials in MEMS applications

- Silicon, polysilicon, structurally modified silicon
 - **Today**: dominant
 - **In the near future**: remain as basic materials; + SOI and porous Si
 - **In the long run**: will be used; hybrid materials start to emerge (e.g. Si + graphene)

- Alternative semiconductor materials (e.g. SiGe, SiC, GaN, diamond)
 - **Today**: in certain specific applications
 - **In the near future**: usage may increase in certain niche applications
 - **In the long run**: will remain as materials for niche applications
12. Materials in MEMS applications

- **“Structural”** materials (e.g. polymers, glass, metals, graphene, CNT, etc.)
 - **Today**: polymers and glass are commonplace
 - **In the near future**: carbon based MEMS in prototyping, metal MEMS emerging, use of polymers will increase (BioMEMS applications little bit behind), use of glass will decrease (demand for CMOS compatibility)
 - **In the long run**: CNTs in high volume, graphene adopted, devices will become “multimaterial”, use of polymers will increase in BioMEMS

- Functional materials
 - **Today**: Piezo, MSM and molecularly imprinted materials are promising
 - **In the near future**: use of piezoelectric materials gaining share, first MSM MEMS prototypes, environmentally reactive materials; other materials in niche applications
 - **In the long run**: ?
12. Materials in MEMS applications

• **Encapsulation materials**
 – **Today**: polymers, metals, glass
 – **In the near future**: thin film, silicon (~WLP)
 – **In the long run**: (thin) metals, silicon, polymers; glass will lose share

• **Amorphic materials**
 – **Today**: in niche applications
 – **In the near future**: wider use of amorphous thin films and wire possible
 – **In the long run**: not a significant growth of use expected
13. Changes in the use of materials

- Glass in sealing will lose share, metal sealing will grow
- Integration towards hybrid materials a likely direction

14. Emerging technologies in volume processing

- Deep reactive ion etching
- Nano imprinting, pico dotting, ALD
- Via technologies, laser processing,
- Carbon-based materials processing
- Different CMOS compatible MEMS approaches will be competing against each other
15. Evolution of processes technologies

- Traditional electronics manufacturing processes
 - **Today**: answers were mixed: e.g. from ”dominant” to “some processes”, and from “merger of MEMS into CMOS clear” to “separate ASIC inside MEMS components”
 - **In the near future**: Basis of real mass production, “MEMS above CMOS [ever] more common ”
 - **In the long run**: “Basic tools will remain”, NEMS emerge, ever more intelligence/logic integrated into sensor level

- Silicon-based SOI and surface MEMS
 - **Today**: Both coexist ; surface MEMS dominates; SOI based MEMS breaking through in specific areas.
 - **In the near future**: Surface MEMS dominates (low performance CE), SOI based MEMS has strong position (“high performance”).
 - **In the long run**: “Unless SOI cost cannot be driven down, alternate solutions will appear”
15. Evolution of processes technologies

- **CMOS post-processing MEMS**
 - **Today**: Emerging technology; few examples existing in volumes; niche
 - **In the near future**: Competes with other CMOS compatible MEMS, the concept will be tested.
 - **In the long run**: Good potential to have significant share

- **Via technologies**
 - **Today**: Studied; emerging in volume
 - **In the near future**: Increasing, common in interposers and in some MEMS devices, Cu vias (via last) will dominate.
 - **In the long run**: widely used, via last processes dominate; via first in some niche applications
15. Evolution of processes technologies

- Roll-to-roll and/or other low-cost processes
 - **Today**: Studied, only very few applications; promising technology
 - **In the near future**: First volume sensors made with R-to-R with inkjet, laser processing appears in volume; Modest usage.
 - **In the long run**: Low cost processes start to replace lithography, etching, deposition (…laser, inkjet, printing); Will be important.

- Improvement of a single process step conventional technologies (e.g. lithography, etching, film deposition)
 - **Today**: Very important; e.g. higher etch rates in DRIE, faster and more uniform deposition processes in TSV materials.
 - **In the near future**: Will be important; e.g. dry resists (combined with laser lithography) can replace conventional liquid resists
 - **In the long run**: Will be important
16. Revolutionary processing technologies

- Molecular level manipulation
 - Nanostructures

- 3D printing of packages

- Direct Writing

- Molecular or structural shrinking (BioTech)
17. Obstacles for the adoption of the emerging process technologies

- Price/cost (process development, equipment, etc.)
- Intellectual property rights
- "courage, passion, far too few people having dreams"
- Too small volumes to justify investment in R&D
- “Too obscure business to justify investment in manufacturing”
18. Package or integration concepts

- **Today:**
 - Standard/cost efficient e.g. over molded, encapsulated plastic packages
 - Soldering/ wire-bonding several components on a single substrate
 - Custom package (e.g. steel), no integration

- **In near future:**
 - WLP (consumer), encapsulated (automotive)
 - 3D common with TSV´s, interposers.
 - In some case it could be possible to remove the package (i.e. WLP); in some case it is mandatory to keep it
 - Standard MID packages or over molding on PCB, 2-4 sensors on same package (single dies)

- **In the long run:**
 - CMOS ready wafers where MEMS can be processed; MEMS above CMOS
 - WLP will prevail
19. Interconnect technologies

• Today:
 – Soldering (lead frames and flip-chip)
 – Wire-bonding
 – Adhesive
 – TSV’s and interposers

• In the future:
 – Soldering (lead frames and flip-chip)
 – Wire-bonding
 – Adhesive
 – TSV

• In the long run:
 – In 2020 already new interconnects (CNT or other)
 – TSV’s and new interposers
20. Environmental requirements

- Today
 - High temperature / RH / pressure
 - Mechanical shocks
 - Corrosion

- In the future no changes to current requirements