On Demand Package Production for Rigid and Flexible Substrates

PIRA Inkjet Technology
27.-28.4.2004 Thistle Hotel, Brighton, UK
Liisa Hakola

Contents

• VTT Introduction
• On demand package production
• Digital package printing
• Ink jet in package printing
• New coding methods and their use in packaging logistical chain
 • Two-dimensional bar codes
• Case: Investigating Data Matrix codes at VTT Information Technology

Data Matrix code
VTT - Technical Research Center of Finland

- Impartial and multidisciplinary expert organisation
 - Approximately 3,000 employees
 - Turnover approximately € 220 million
- Six research institutes
 - VTT Information Technology
 - VTT Electronics
 - VTT Industrial Systems
 - VTT Biotechnology
 - VTT Processes
 - VTT Building and Transport
- Clients and co-operation partners are industrial enterprises, other companies and businesses, universities and research institutes.
- Produces new technologies in co-operation with domestic and foreign partners.

VTT Information Technology, Media

- Personnel 37 in three research groups
 - Information Carriers, Color Management and Multiple Media
- Information Carriers
 - Performance of paper and new information carriers in media processes
- Core technologies
 - Interaction mechanisms of ink jet printing
 - Digital package printing
 - Performance of novel information carriers
 - Runnability and paper economy
 - Management of functional paper properties
 - 3D modelling of printing materials
On demand printing

- Small series at short notice economically
- Printing done just in time
- Benefits
 - Shorter production and delivery times
 - Customised and personalised products
 - Investment costs decrease
 - Amount of waste decreases
 - No need for warehousing
- Weaknesses
 - Data transmission standards still under development
 - Not suitable for all kinds of printed products

On demand printing in packaging

- Trends in packaging industry
 - Packages for mass markets → Packages for particular consumer segments
 - Production to stock → Production by orders
 - Selective consumers → Shorter life cycles for packages
 - Fast price changes → Smaller series
- Benefits of on demand package printing
 - Variable data → Customised and personalised packages, language versions, small series
 - Shorter production chain → Shorter delivery times
 - Less material consumption and waste → Cost savings and less environmental load
Digital package printing

- Enables on demand package printing
- Benefits
 - Printed pattern changed easily and high quality graphics
 - Logistics of package production gets easier
 - Variable data enables better tracking of packages
 - Shorter time for new products for reaching the market
 - Expenses better managed
 → Added value to retail stores and consumers
- Weaknesses
 - Digital colour printing still more expensive than colour offset
 - High maintenance costs

- In 2010 almost 20 % of all packages will be digitally printed (PIRA International, 2002)

Ink jet in package printing now

- Dates, bar codes, batch numbers i.e. variable data directly on labels and packages
- All kinds of printing substrates
 - Rigid or flexible
 - Smooth or rough
 - Flat or round
 - Fibre-based, glass, metal, plastic
- Most common printing method continuous ink jet
 - Mono colour
 - Low resolution
 - High speed
 - Online printing

http://www.deltacustombox.com
http://www.domino-printing.com
Ink jet in package printing in future

- Whole package ink jet printed
- Especially cardboard and corrugated i.e. fibre-based packages suitable for ink jet printing
- Already exists sheet-fed and web-fed ink jet presses for package printing
 - Based on drop-on-demand ink jet technology
 - Full colour
 - Several printheads per colour organized in a row or a matrix
 - Variable data
 - Resolution at least 300 dpi
 - High speed
- Most suitable packaging sectors: medical, food, and chemical packages
- Also used for printing a protective layer on top of a package

Inkjet presses for rigid substrates

- Sheet-fed presses
- Piezoelectric ink jet technology
- Short-run printing, personalisation
- Corrugated board, foam board, cardboard
- Ink requirements: fast drying, no spreading
- Medium speed

http://www.dotrix.be

Scitex Vision CORjet

http://www.bel2000.com
Inkjet presses for flexible substrates

- Web- or sheet-fed presses
- Piezoelectric ink jet technology
- Short-run printing, personalisation
- Labels, cardboard, security printing, textile printing, wall covers, plastic substrates
- UV curing inks best for various substrates
 - Special colours
 - High speed
 - High resolution

Effect of substrate on ink jet print quality

- Image quality and dynamic interactions

LD-PE coated film
Folding boxboard
Ink jet paper
Uncoated paper

Behaviour of an ink drop on paper during the first 15 µs after the printing
New coding methods

- Two-dimensional bar codes
- Invisible printing
- Microtext
- Digital watermarks

Original picture
Original picture with a digital watermark
Digital watermark

New coding methods in package production

- Storing large amount of information in small areas
- Hiding information
 - Unrelevant information to consumers
- Anti-counterfeiting
 - Softwares, medicines, cosmetics, brand clothing, music and video recordings, other luxury products
 - Counterfeiters copy the package precisely not the product itself → Protect the package!
 - Globally 500-1000 billion dollars lost to counterfeiters (Converting Magazine, 2001)
Two-dimensional bar codes

- Lines of bars or cells (polygonal elements) organised in a square or a rectangle according to particular bar code symbology standard
- Benefits
 - Large information capacity
 - Independent database
 - Error correction algorithms → Durable information
 - Physical size scalable
 - Small or no quiet zone

Two-dimensional bar codes in supply chain

- Carry large amounts of information and information travels together with the package
- Information can be accessed anywhere if a suitable reading device is available
- Information can be encrypted → Anti-counterfeiting
Two-dimensional bar codes and ink jet printing

- Printing done directly on package surface or on separate label
 - Before, during or after packaging
- Print quality of codes depends on
 - Resolution
 - Substrate
 - Ink
- Every consecutively printed bar code can be different
- Both continuous and drop-on-demand ink jet suitable

Case:
Investigating Data Matrix codes at VTT Information Technology

- Black and white squares (cells) organised in a square matrix
 - Symbol sizes from 10×10 to 144×144 cells in rows \times columns
- Black borders (locator pattern) in two sides of the symbol
- Information capacity:

<table>
<thead>
<tr>
<th>Rows \times columns</th>
<th>Numeric characters</th>
<th>Alphanumeric characters</th>
<th>8-bit ASCII characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>24 × 24</td>
<td>72</td>
<td>52</td>
<td>34</td>
</tr>
<tr>
<td>40 × 40</td>
<td>228</td>
<td>169</td>
<td>112</td>
</tr>
<tr>
<td>64 × 64</td>
<td>560</td>
<td>418</td>
<td>278</td>
</tr>
<tr>
<td>144 × 144</td>
<td>3116</td>
<td>2335</td>
<td>1556</td>
</tr>
</tbody>
</table>
VTT objectives

- How Data Matrix codes can be produced, used and detected in packaging supply chain
- To outline products, services, logistic systems and companies which can exploit developed coding and detecting systems

Imaging Data Matrix codes with a camera phone

- Camera phone distance from the code → 40 to 80 mm
- Cell size → at least 0.20 mm
- Code dimensions → 24 × 24 code with 0.20 mm cell size = 4.8 × 4.8 mm
- Information capacity → 64 × 64 maximum for current camera phones
- Camera lens → Macrolenses needed
- Ink jet printing → 300 dpi enough for larger cell sizes
- Substrate → Spreading
Summary

• Trends in package industry support shifting to on demand package production
• Digital printing enables on demand package printing
• Ink jet printing suitable for printing codes on packages and for printing the whole package
• New coding methods enable storing large amounts of data on small areas
• Two-dimensional bar codes offer great benefits to package production and packaging supply chain
• Camera phones can be used for detecting two-dimensional bar codes

Thank you!

Liisa Hakola
Research Scientist
Metallimiehenkuja 10, P.O.Box 1204
FI-02044 VTT, Finland
Phone: +358 9 456 7206
Fax: +358 9 463 848
E-mail: Liisa.Hakola@vtt.fi

http://www.vtt.fi
http://www.vtt.fi/tte/informationcarries/