Title: Adaptive Ambient Empowerment of the Elderly (a2e2): Technical viewpoint and challenges

Author(s): Merilahti, Juho; Similä, Heidi; Perälä, Jukka; Kivikunnas, Sauli; Kylönen, Vesa; Kaartinen, Jouni; Ylimaula, A.; Hegerstrøm, F.; Ritterfeld, U.

Citation: AALIANCE Conference, Malaga, Spain, 11 - 12 March 2010

Date: 2010

Rights: This poster may be downloaded for personal use only.
Adaptive Ambient Empowerment of the Elderly (a2e2): Technical viewpoint and challenges

Motivation
Support older adults to be physically more active; focus on people who have sedentary or inactive life-style, or have or are at risk for having diabetes type II or cardiovascular disease.

Goals in the project
- Determine user requirements for “fun to use” application to enable physically more active life-style
- Realize the solution supported by different technologies
- Include the solution as a part of the company partners’ current supply of services
- Finally piloting and evaluation

Technology perspective
1. Novel user-computer interaction concepts
 e.g. Touch screen, intelligent virtual agent (coach) and avatar
2. Different personalized sensors enrich the interaction
 e.g. offline and online activity monitoring and vital sign measuring
3. Interoperability and expandable infrastructure
 e.g. guidelines provided by Continua Health Alliance are followed when feasible

Commercial sensors
Sensors that measure person’s activity behaviour and vital signs are included to support developed concepts. Bluetooth and USB are used for communication. Currently in use:
- **Heart rate:**
 - Intensity of the activity
 - Nonin Onyx® II 9560 Pulse oximeter*, Zephyr™ HxM
- **Activity/movement:**
 - Duration and type of activities, intensity
 - GCDC X6-2, Omron HJ-721IT*
- **Blood pressure:**
 - Wellbeing, activity can lower, risk factor for heart disease
 - A&D BPM UA-767PBT-C*
- **Weight:**
 - Wellbeing, motivator in when losing weight, possible indicator of health problems
 - A&D UC-321PBT-C*
- *=Continua Certified

Sensor data Manager
Receives data from the sensors and determines actions performed with the data e.g. set to data processor.
Follows Continua Guidelines for PAN-Interface and IEEE 11073 standard family in communications and data models.
Forwards processed or unprocessed data to the server database with user related information following Continua’s WAN-Interface.

Sensor data Processor
Processes sensor data to guideline compatible form to be sent to the server database over WAN-Interface
e.g. intensity of the activity session.
Non-Continua certified sensors’ data are processed to satisfy the Guidelines for WAN-Interface.

System logics
According to automatically determined or Care management system’s given events the logics is giving tasks to the Virtual agent to communicate with the user.
Follows that the tasks are fulfilled according to user interactions via Virtual agent or sensors’ data.
E.g. physical activity amount recommendations for older adult can be followed.

Virtual agent (coach) and avatar
Consumes tasks the logics is providing trough animated coach by utilizing touch screen computer.
Provides motivating and “fun to use” environments for the user trough animated self presentation i.e. avatar.
User feedback and questionnaires information are sent to the server database.

Care management system
Provides an interface to maintain users information and view collected user data such as activity behaviour.
Can be used to set events which the logics handle such as exercise session or daily activity task.
Includes different roles to maintain and view the information. E.g. nurse, clinician or relative.

Server data Manager
Receives data from the user’s home, checks the data and forwards the data to the server database.
Follows Continua Guidelines in communication utilizing HL7 V2.6 messaging as framework.
Aggregates user data and forwards this to Health Record following Continua Guidelines for xHRN- Interface.

Server data processor
Server data are processed to provide meaningful information to system’s logics. E.g. activity plan based recommendations or professional’s decisions can be followed up via the data.
Aggregates data to determine user’s health status according to collected data from questionnaires and sensors.

Juho Merilahti, Heidi Similä, Jukka Perälä, Sauli Kivikunnas, Vesa Kyllönen, Jouni Kaartinen, VTT Technical Research Centre of Finland
Anssi Ylimaula
Mawell, Finland
Flemming Hegerstrøm
Hospitality, Norway
Ute Ritterfeld
Center for Advanced Media Research, VU University, Amsterdam