Title: On site air filter test system

Author(s): Kulmala, Ilpo; Kalliohaka, Tapio; Taipale, Aimo; Salmela, Hannu

Citation: Aerosol Technology 2015, AT2015, 15 - 17 June 2015, Tampere, Finland

Date: 2015

Rights: This conference presentation may be downloaded for personal use only.
On site air filter test system

Aerosol Technology 2015
VTT Technical Research Centre of Finland
Ilpo Kulmala, Tapio Kalliohaka, Aimo Taipale and Hannu Salmela
Contents

- Background
- Current European filter test method
- On-site test system and measurement site
- Results
- Conclusions
General ventilation air filters

- Protect building occupants from outdoor contaminants
- Reduce the soiling of the HVAC system (heating and cooling coils, ductwork)
- Key properties:
 - Filtration efficiency
 - Pressure drop
 - Dust holding capacity
Filter testing according to EN 779

Measurement of initial efficiency & dp

Loading with test dust

Measurement of removal efficiency & dp

dp ≥ 450 Pa

No

Yes

Calculating average efficiency Em (D_p=0.4 µm)

F7: 80< Em<90%

F8: 90< Em<95%

F9: Em>95%

Minimum efficiency for 0.4 µm particles:

F7: 35%

F8: 55%

F9: 70%
Why additional tests are needed?

- The EN 779 provides a comparable but simplified evaluation process of air filters which does not describe the real life behaviour.
- In real operating conditions, the filter performance may differ greatly from that obtained in laboratory due to:
 - Differences between ambient aerosol characteristics and the test dust used in EN 779: concentrations and particle size distributions.
 - Ambient conditions.
 - Filter face velocity distribution, and filter operating and loading conditions.
- Some parameters are time-dependent!
On-site on-line test system

- Particle counter
- Valve system
- USB-modem
- 3G Filter
- PC
- Car
Test results – filter used for 2 weeks

Filtration efficiency for fine particles (0.4 um) is high.

Indoor/Outdoor ratio varies greatly due to indoor activities (and sources).

26/06/2015
Test results: detection of anomalies

Changes in performance affecting the protection efficiency can be seen in real time.

Indoor/Outdoor ratio changes due to reduced efficiency.
Filter used for 6 weeks – charger back in operation

Remediation of charger
Filter used for 7 weeks
Fractional filtration efficiency

![Graph showing filtration efficiency versus particle size.](image)
Particle size distributions

Size distribution 1.8.2014 in the range 0.3 - >5 µm
Conclusions

- The developed test system can measure and monitor filter performance in real time and on-line.
- The results describe real life behaviour of the filter:
 - Filtration efficiency
 - Pressure drop increase due to loading
 - Dust holding capacity
- Based on the results the optimal filter change time can be estimated accurately.
- It is possible to enhance the filtration efficiency for electret filters with High Voltage charging.
- The effect of enhanced filtration efficiency on indoor air quality and improved protection of occupants could be clearly seen.
Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme under grant agreement n° 313077 within the EDEN Project (End-user driven DEmo for cbrNe).
Thank you!