AM-prosessin integrointi tuotantoon – metalliosien valmistuksen työvaheet

Kirjoittajat: Antti Vaajoki, Sini Metsä-Kortelainen

Luottamuksellisuus: Julkinen
TUTKIMUSRAPORTTI VTT-R-03327-16

Raportin nimi
AM-prosessin integrointi tuotantoon – metalliosien valmistuksen työvaiheet

Asiakkaan nimi, yhteystenäkö ja yhteystiedot
Tekes
PL 69
00101 Helsinki

Asiakkaan viite
Tekes 40160/14; Dno 1852/31/2014

Projektin nimi
AM-teknologiasta uutta liiketoimintaa

Projektin numero/lyhytnimi
101201/AM-liito

Raportin laatija(t)
Antti Vaajoki, Sini Metsä-Kortelainen

Sivujen/liitesivujen lukumäärä
30

Avainsanat
Jälkikäsittely, lisäävä valmistus, SLM

Raportin numero
VTT-R-03327-16

Tiivistelmä
Metallien AM-prosessin (jauhepetimenetelmä) tuotannolliseen käyttöönottoon ja tuotantoon integroimiseen liittyvät paljon erilaisia työvaiheita. AM-laitehankintaa suunniteltuaessa onkin olenkaista ottaa huomioon kaikki ne työvaiheet, jotka tarvitaan haluttujen osien valmistamisessa. Lähés aina tarvitaan tiettyjä työvaiheita jauhepetivalmistuksessa kuten tukien poisto, mutta toisaalta osa työvaiheista määrräytyy sen mukaan, millaisia vaatimuksia lopputootteille on asetettu mm. pinnanlaadun ja mittatarkkuuden suhteen. Tässä raportissa kuvataan jauhepetimenetelmällä tapahtuvan metallien lisäävän valmistuksen liittyvät työvaiheet.

Hyvän AM-prosessin suunnittelun ja toteutuksen sekä laadunvalvonnan tavoite on, että lopputootteet ovat niille kohdistettujen vaatimusten mukaisia, ja että tuotanto on tehokasta ja kannattavaa.

Luottamuksellisuus: Julkinen

Espoo 20.9.2016

Laatija

Tarkastaja

Hyväksyjä

Antti Vaajoki
Tutkija

Antero Jokinen,
Erikoistutkija

Pasi Puukko,
Tutkimustiimin päällikkö

VTT:n yhteystiedot
VTT, Antti Vaajoki, PL 1000, 02044 VTT

Jakelu (asiakkaat ja VTT)
VTT, alkuperäinen
Tekes ja projektin yritykset, pdf kopio

VTT:n nimen käyttäminen mainonnassa tai tämän raportin osittainen julkaisminen on sallittu vain Teknologian tutkimuskeskus VTT Oy:ltä saadun kirjallisen luvan perusteella.
Alkusanat

Tekijät
Sisällysluettelo

1. Johdanto .. 4
2. Jauheen hallinta .. 6
 2.1 Jauhemateriaalin valinta ja hankinta / valmistus ... 6
 2.2 Jauheen seulonta ja kuivaus ... 6
 2.3 Jauhesäiliön täyttö ja kiinnitys AM-koneeseen .. 6
 2.4 Jauheen kierrätys ja hävittäminen .. 7
 2.5 Jauheen laadunvalvonta .. 7
3. AM-kappaleen valmistus .. 7
 3.1 Tulostusalustan valmistelu ja kiinnitys ... 7
 3.2 Tiedoston siirto koneeseen ja ajon käynnistys ... 7
 3.3 Tulostuksen laadunvalvonta ... 7
 3.4 Kappaleen poisto koneesta .. 8
 3.5 Tulostuskamion puhdistus .. 8
4. Jälkikäsittelyt .. 9
 4.1 Jauheenpoisto ... 9
 4.2 Lämpökäsittelyt ... 10
 4.3 Kappaleen irrotus alustasta ja tukien poisto ... 11
 4.4 Koneistus ... 11
 4.5 Rae- & kuulapuhallus .. 12
 4.6 Abrasiivisen virtauksen menetelmä (Abrasive flow method, AFM) 13
 4.7 Magneettiabraasio (Magnetic Abrasive finishing, MAF) .. 14
 4.8 Massaviimeistely (mass finishing) .. 14
 4.9 Käsinhionta .. 15
 4.10 Kiillotus manuaalisesti ... 16
 4.11 Jäkkilaserointi ... 16
 4.12 Mikrotyööstroppesi, micro-machining process MMP .. 17
 4.13 Terminen purseenpoisto, Thermal Energy Method TEM ... 17
 4.14 Kemiallinen ja sähkökemiallinen kiillotus ... 18
 4.15 Hybridilitaiteet ... 19
 4.16 Robotisointi .. 20
 4.17 HIP-käsittely (isostaattinen kuumapuristus) ... 21
 4.18 Peittäus ... 21
 4.19 Infiltrointi .. 21
 4.20 Plasmakäsittely ... 22
 4.21 Pinnoitus / maalaus ... 22
5. Lopputuotteen laadunvalvonta ... 22
6. Yhteenotto .. 24
 Lähdeviitteet ... 24
 Liitteet .. 30
1. Johdanto

Metallien AM-prosessiin jauhepetimenetelmällä liittyvät työvaiheet sekä niiden viitteellinen järjestyys on esitetty alla (kuva 1 ja kuva 2). Tässä raportissa on kuvattu tarkemmin jokainen itse prosessiin ja jälkikäsittelyyn liittyvä työvaihe. Osa työvaiheista on automatisoituissa, mistä kerrotaan tarkemmin työvaihekuvausten yhteydessä. AM-kappaleen suunnittelusta kerrotaan tarkemmin AM-liito työpaketti 2:n raportissa [1].
Kuva 1. AM-prosessin työvaiheet (metallien AM-valmistus jauhepetimenetelmällä).

Kuva 2. AM-prosessin työvaiheet ja niiden järjestys (metallien AM-valmistus jauhepetimenetelmällä).
2. Jauheen hallinta

2.1 Jauhemateriaalin valinta ja hankinta / valmistus

Yleisesti ottaen kaikki metallimateriaalit, joita voidaan hitsata, ovat hyviä kandidaatteja jauhepetimenetelmälle valmistettaviksi [3]. AM-valmistukseen tarkoitettujen jauhemateriaalien määrä kasvaa vuosittain huomattavasti ja se ansiotaan toiminnassa ja tuotannossa. AM-prosessilla voidaan tutkia hyvin erilaisia teräksiä, työkaluteräksiä, titaania, titaaniseoksia, alumiinia, alumiiniseoksia, nikkeliiseoksia, kobolttikromiseoksia, kupariseoksia sekä jalometalleja [4].

2.2 Jauheen seulonta ja kuivaus

Manuaalisissa koneissa AM-prosessissa ylimenosäiliön kertynyt jauhe seuottedaan ennen uudelleenkäyttöä. Ennen automatisoitua seinän vuoksi kelaan ja paperikukkoon jauhe kiertää laitteen sisällä, jota voidaan mitata ja jauheen kosteudet voidaan mitata. Optimaaliseen seinäpainoon ja seullen jauheen juoksevuuteen käytetään, jotta jauhe juoksee ja levenee hyvin tuolin. Manuaalisissa koneissa AM-prosessesissa ylimenosäiliöön kertynyt jauhe seuottedaan ennen uudelleenkäyttöä.

2.3 Jauhesäiliön täyttö ja kiinnitys AM-koneeseen

Uusi jauhe tai seulonnan ja kuivauksen kautta kierrätetty jauhe siirretään jauhepetimenetelmään, joka kiinnitetään AM-koneeseen ennen ajoa käynnistämistä. Kiinnittämiseen kierrätetty jauhe siirtyy automaattisesti seulan kautta jauhepetimenetelmään, johon lisätään myös uutta jauhetta kulutuksen mukaan.

Jauhemateriaalin vaihtaminen AM-koneeseen on suhteellisen iso ja työläs operaatio, sillä kaikki jauheen kanssa tekemissä olleet koneen osat pitää puhdistaa huolellisesti. Aikaa materiaalinvaihtoon kululu tyykillisesti muutamasta tunnista pariin päivään konetypistä riippuen. Onkin tärkeää suunnitella AM-tuotantoprosessista ettei materiaalinvaihtoja tehdään mahdollisimman harvoin. Joissakin tapauksessa materiaalinvaihto on niin iso operaatio, että se kannattaa olla ensinnäkin, joka on yksinäinen ja mukana valmistetaan ne yhdessä matkalla, jolloin materiaalien koneita, jolloin materiaalit eivät tarvitse vaihtaa ollenkaan, ja koneeseen lisätään vain uutta jauhetta sitä mukaan, kuin prosessissa sitä kuluu.
2.4 Jauheen kierrätys ja hävittäminen

Jauhe kiertää sekä automaattisissa että manuaalisissa AM-koneissa erittäin tehokkaasti, ja hävitetään sekä joutuu oikeastaan seinään kertynyt kappaleen poiston yhteydessä imuriin kertynyt kierrätettäväksi kelpaamon (palanut jne.) jauhe. Hävitetään sekä joutuu oikeastaan ongelmajättelaitokseen.

Imuriin kertyneen jauhen säilytys sisältää pitää olla huolellinen, sillä mm. talviksi muodostavat veden kanssa vetyä, mistä voi seurata vaaratilanteita. Myös erilaisten jauheiden keskinäiset reaktiot käsittelevät kappaleen vammoittamista ja kuilua.

2.5 Jauheen laadunvalvonta

On tärkeää valvoa AM-prosessissä käytettävän jauheen laatua, sillä huonolaatuinen jauhe johtaa todennäköisesti epäonnistuneeseen valmistusprosessiin. Alkuaineanalysilla voidaan varmistaa, että jauheen kemiallinen koostumus on juuri sellainen kuin pitää. Jauheen kemiallisella koostumuksella on vaikutusta mm. sulamislämpötilaan, mekaanisiin ominaisuuksiin, hitsattavuteen ja lämmönjohtavuteen [2].

Jauheen partikkelikokojauma voidaan mitata mm. optisilla menetelmissä. Vertailua eri jauhe-erien kesken kannattaa myös tehdä. Jauheen partikkelikokojauma vaikuttaa AM-prosessissa mm. jauheen juoksevuuteen, jauheperäinen iskuryteen, jauheen sulattamiseen vaadittavan energian määrään sekä sulamisluokan ongelmajärjestelmien tulee huomioimaan [2].

Muita jauheen laatuun vaikuttavia tekijöitä ovat jauheen mahdollinen hapettuminen, jauheen ikä, prosessissa kiertäneen jauheen osuus sekä jauheen juoksevuus, johon vaikuttavat mm. kosteus, partikkelien muoto sekä kokojakauma.

3. AM-kappaleen valmistus

3.1 Tulostusalustan valmistelu ja kiinnitty

3.2 Tiedoston siirto koneeseen ja ajon käynnistys

Tulostustiedostosta voidaan siirtää suunnittelun jälkeen tulostusalustaan esimerkiksi muistitikuvallista avulla. Tulostutilin ajoon jälkeen on hyvä vielä tarkistaa, että laaduttu malli näyttää olevan kunnossa kerroksittain, eikä esimerkiksi kappaleita ole asetettu ajotiedostossa toisensa päälle. Tämän jälkeen kiinnittetään ajo valmistuslaitteesta.

3.3 Tulostuksen laadunvalvonta

AM-laitteilla on vielä haasteita toiminnassa ja luotettavuuden huippumuodoisin, mikä heikentää lopputuotteiden laatua. Kappaleen metallurghiset ja mekaaniset ominaisuudet määrittävät valmistuksen aikaisesta metallisalaisuudesta riippuen. Useat AM-valmistetun kappaleen pin-
nen aiheuttaa virheitä sulaan ja johtaa huokosuihin ja halkeamiin. Laadunvalvonnan kannalta tärkeitä piirteitä on kerrosten välillä homogeenisuus, osan geometria, lopullisen kappaleen jännityksien kehitteily ja eheys. Kaikkien näiden hallitsemisen on monimutkainen haaste. Toistaiseksi AM-prosessia on haallittu usein yrityksen ja erityyppien kautta sekä kokeellisillä menetelmissä, mutta toiveissa on ollut kehitettävän järjestyksen tarkistamisen kulmassa. Kokeellisista menetelmissä voidaan mainita varsinskiin AM-kappaleen valmistamisen yhteydessä valmistetut vetosauvat ja testinäprit, joista voidaan mitata ajankohtaisesti erilaisia lujuuusarvoja sekä analysoida mikrorakennetta ja niidenlähtöyön. 5,6

Kun laadunvalvontamenetelmää käytetään prosessin aikana (in-process quality assurance, IPQA), vältetään prosessin järkeiseltä tarkistuksesta (post-process quality assurance, PPQA), mikä nopeuttaa tuotantoa. Valmistuksen järkeiseen tarkistukseen liittyy myös haasteita, jotka valmistuksen uudelleen käyttöön korostuu. Sulan lämpötilan ja profiilin infrafanamittausta kehitetään ja saatavilla on jo suurnopeuskameroita valmistuksen monitoreointiin. Automatiattisia viantiuunnistusalgortimeja pitää kuitenkin kehitettävä. Monitorointitekniikan liittäminen valmistusläitteistoon yhteyteen vaatii vaatimattomasti myös laitteen modifiointia. 5,7,8

Yksinkertaisemmilta prosessiin lisännytä monitoreointisistemista on esimerkiksi kuvioidun valon käyttö. Tällainen menetelmä on käytössä mm. NASA:lla ja sen avulla voidaan varmistaa jo prosessin aikana, että AM-kappaleen dimensiot ovat oikeat. Monimutkaisempien monitoreointisysteemien esimerkiksi on mm. Sigma Labs:n kehitettämä PrintRite3D-paketti. Pakettissa on mukana mm. SENSORPAK-laitteisto, joka koostuu akustisista, optisista ja termisistä prosessidatankerusselsistä. Lisäksi avulla on mm. tilastollinen analyysityökalu INSPECT, jonka avulla 3D-laitteistot otetaan vastaan laajempaa tarkistetta varten. INSPECTin on verratu samoin prosessiparametreille aloitettujen tulostusten prosessinaikaisia eroja ja tallennettu olosuhteet tuottavat laudukkaita osia. Tämän avulla voidaan ohjata esimerkiksi lasersärän käynnistämistä vasta kun ennalta määrätty vaatimukset täyttyvät. Muitakin monitoreointisysteemilta on käytettävissä mm. Sigma Labs:n kehitettämä PrintRite3D-paketti. 5,7,8

3.4 Kappaleen poisto koneesta

Kun ylimääräinen jauhe on saatu poistettua tulostetun kappaleen ympäriltä, poistetaan tulostuslausta saadaksesi ylimääräisen jauheen uudeksi käyttöön. Tätä ennen voi olla hyvä poistaa kappaleesta selkeästi palanutta jauhetta esimerkiksi jauheruusavulla. Jos tulostuskaappaleessa pystyy operoimaan esimerkiksi laitteiston suojahansikkaan avulla, kannattaa käyttää jauheen ylimääräisen jauheen poistamisen vasta kun ennalta määrätty vaatimukset täyttyvät. Muitakin monitoreointisysteemilta on käytettävissä mm. Sigma Labs:n kehitettämä PrintRite3D-paketti. 5,7,8

3.5 Tulostuskaammon puhdistus

Automatisoiduissa laitteissa on mahdollista, että koko tulostuskaammon vaiheenjärjestys on vaihdettavissa puhdistukseen, kappaleen poistoon ja jälkikäsittelyyn. Tällöin toimii AM-laite saadaksesi passamin uudestaan käyttöön, kun tilalle sijoitetaan toinen valmisteltu kappale tulostusta varten.
4. Jälkikäsittely

Ainetta lisäävässä valmistuksessa kappaleiden jälkikäsittely on tärkeässä osassa. Suurin osa AM-kappaleista tarvitsee jälkikäsittelyä, jotta niitä voidaan käyttää kohteissa, joihin ne on suunniteltu. Jälkikäsittelyn tarpeen määrittävät mm. käytetty AM-teknikka, käyttökohde ja käyttökohteen asettamat mekaaniset ja estettiset vaatimukset. Tyypillisesti jälkikäsittely on jäännyt pienemmälle huomiolle AM-prosseisin verrattuna, vaikka se on vähintään yhtä tärkeä prosessivaihe AM-prosessin toiminnallisuuden ja mahdollisuuksien kannalta. [3,4,12,13]

4.1 Jauheenpoisto

Jauheenpoisto on tärkeää käyttää kilpailuutena, jos AM-valmistuksen palveluntarjoaja haluaa erottua joukosta. Tehokasta ja tarkan jälkikäsittelyn ansiosta tuotteesta on mahdollista pyytää korkeampaa hintaa kuin heikomman laadun tuotteesta. [3]

Tulostetun kappaleen pinnankarheuteen vaikuttaa käytetty AM-menetelmä, materiaali, pärtekkelikoko, kerrospaksuus, kappaleen orientaatio tulostuksen aikana ja sähkösiintymä. Laserkäyttöissä jauhepetimenetelmässä tulostettujen kappaleiden pinnankarheus on n. Ra 8–20 µm, joka ei useinkaan ole riittävän hyvä esimerkiksi muotteihin. [3]

kehitettyt laitteet ovat hyödyllisiä. Sintrautuneen tai kappaleen sisään kiinni jääneen jauheen poistoon voidaan käyttää puun työstöön tai hampaiden puhdistukseen tarkoitettuja työkaluja. EBM-prosessissa käyttämätön jauhe on puolihieman lisäksi tilassa ja kappaleet pitää ertytä toisiaan kuulapuhaltamalla. Kuulapuhalluksessa käytettävän materiaalin korkeus on samaa kuin kappaleen valmistusmateriaalilla. [3,4,12]

Irtonaisen jauheen poistoon on kehitetty myös automaatiot. Laitteet voivat olla erillisiä tai integroitu AM-laiteen kammioon. Oletetaan, että tulevassa järjestelmässä jaamaksaan ja valmistamaan järjestelmässä. Jauheenpoisto voidaan toteuttaa mm. täryn ja imun avulla. Automatiikkaa käytetään automaattrehvitettäväksi ja mahdolliset työstöt, joiden jälkeen saadaan tulostuslaiteen käyttöaikaan hyödynnettä tehokkaammin. [3,15,16]

4.2 Lämpökäsittely

Kun AM-kappaleet on puhdistettu ja ylimääräinen materiaali poistettu, on usein lämpökäsittelyiden vuoro. Lämpökäsittelyt käytetään vähentämään kappaleiden jäännösjännityksiä ja tuomaan parempia mekaanisia ominaisuuksia muodostamalla kappaleeseen haluttu mikrorakenne. Lämpökäsittelyt saatetaan tehdä useassa vaiheessa, jolloin ensin suoritetaan jännityksenpoistohehkutus ennen kappaleen irrottamista tulostuslautan jälkeen. Tämän jälkeen järjestelmä voidaan toteuttaa riittävän tarpeellista lämpökäsittelyä [3,4,17].

Lämpökäsittely prosesseja on lukuisia ja oikean lämpökäsittelyalueen valinta riippuu useasta tekijästä mm. kappaleen materiaalista, koosta, geometriosäädöistä materiaalista, ja käytetystä AM-menetelmistä. Usein käytössä on perinteiset lämpökäsittelyparametrit kullekin materiaalille. Tapauksiin, joissa halutaan säilyttää hienojakoiset oksat ja vähentää jännityksiä sekä parantaa sitkeyttä, on kuitenkin kehitetty tietyjä erityisiä lämpökäsittelymenetelmiä. Lämpökäsittely tulisi suorittaa tyhjiössä tai lujennettavaa omavanssa asemassa järjestelmässä. [3,4,17]

4.3 Kappaleen irrotus alustasta ja tukien poisto

Useissa AM-menetelmissä kuten jauhemapenitetelmässä, tulostuksen yhteydessä on tarpeen käyttää tukirakenteita. Ilman tukia tai riittämättömällä tukirakenteilla valmistetut kappaleet saattavat mm. kieroutua termisten jännitysten takia ja olla käyttökelpottomia. Elektroniikusulatuksessa (EBM) tarvitaan vähemmän tukia, koska korkeamman valmistusprosessin lämpötilan takia jäänässäjännitykset ovat pienempiä. [3,4]

Tuet poistetaan tyypillisesti lämpökäsittelyn jälkeen ja poisto vaatii usein manuaalista työä. Valmistettaessa kappaleita jauhepetimenetelmässä (PBF, powder bed fusion) tai materiaalin ja lämmön kohdistusmenetelmillä (DED, direct energy deposition) metalliset ja keraamiset tukien käyttäminen on usein tarpeen. Ilman tukia tai riittämättömillä tukirakenteilla valmistetut kappaleet saattavat muodostua ja olla käyttökelvottomia. Elektronisulatuksessa (EBM) tarvitaan vähemmän tukia, koska korkeamman valmistusprosessin lämpötilan takia jäänässäjännitykset ovat pienempiä. [3,4]

4.4 Koneistus

Perinteistä koneistusta, kuten survausta tai jyräintä, voidaan käyttää parantamaan tulostetun kappaleen pinnan ominaisuuksia tai ulkonäköä. Tyypillisesti koneistusta käytetään kuitenkin mittatarkkuus- ja pinnanläatuvaatimusten täyttämiseen. Esimerkiksi metallisten AM-kappaleiden reiät, pinnan, kierteen ja kierresovitteet ovat esimerkkejä tarkkuutta vaativista kohteista. [4,12]

Koneistuskeskustta voidaan hyödyntää AM-valmistettujen kappaleiden kiilotuksessa perinteisen tavan lisäksi käyttämällä kappaleen muotoa mukailevaa työkalua. Tällainen teknika
tunnetaan nimellä *shape adaptive grinding*, SAG ja se soveltuu mm. kaareville geometriioille, joita voi olla vaikea hioa perinteisin menetelmin. SAG-menetelmässä akseliseen koneistuksekuksen on kiinnitettävä työkalo, jossa on työstettävää pintaa mukaileva elastinen osa. Elastisen osan on kiinnitettävä hiovaksi aineeksi timanttipartikkeleita jäykkii hartsipelletteihin upotettuina. Menetelmää on käytetty mm. AM-titaanikappaleiden kiillotukseen ja pinnankarheutta on saatu alennettua huomattavasti lähtien arvosta Ra n. 5 μm aina Ra n. 0.01 μm asti. [21,22]

4.5 Rae- & kuulapuhallus

Eräs menetelmä AM-kappaleen jälkikäsittelyyn on kappaleen puhaltaminen joko abrasiivisilla rakeilla tai pyöreillä kuulilla. Raepuhallus tai hiekkapuhallus (*shot blasting*) on abrasiivinen prosessi, jossa kappaleen pinnasta poistuu materiaalia. Tätä prosessia käytetään mm. kappaleen puhdistamiseen. Esimerkiksi juohepetiteknikalla valmistettujen kappaleiden pinnasta saadaan irrotettua osittain suolan sulanut jauhe. Tähän voidaan käyttää myös kuulapuhallusta (*shot peening*), joka on yleensä enemmän metallisten pintojen kylmämuokkausta. Tällöin abraasion sijaan suorakulmaineiset partikkelit kulut kompaktioivat kappaleen pintaa. Tällä prosessilla voidaan parantaa tulostetun kappaleen pinnankaasuvuutta aina yleensä 15–30%.*

Kuva 3. Reunoilla keraamikuulilla puhalletut kappaleet (kirkkaammat) ja keskellä teräskuulilla puhallettu kappale (tummempi).

Kuulapuhalluksella saadaan metallikappaleetta muokattua ja synnyttävää puristusjännitystila, joka on hyödyllinen. Peeningin aiheuttaman jäännösjännityksen voimakkuutta on mahdollista mitata Almen-testiliuskan avulla. Kuulapuhallus ja sen synnyttämä puristusjännitystila voi kasvattaa kappaleen väsymiselinikää 0–1000 % riippuen mm. kappaleen geometriasta ja materiaalista, kuulan materiaalista ja laadusta sekä kuulapuhalluksen intensiteetistä ja peittäesteestä. Työstökarkenevissä materiaaleissa, kuten titaanissa ja nikkeliiseoksissa, kuulapuhalluksen aiheuttama kylmätyöstö voi kuitenkin pienenää kappaleen pinnan sitkeyttä niin paljon, että pintaan jää hauras kerros. [12,26,27]

Kuulapuhalluksessa voidaan käyttää useampia prosessiaskeleita työstettäessä lasersinrattatuja kappaleita. Eri vaiheet ovat mm. kompaktointipuhallus (compaction, peening) teräskuullalla, puhallus keraamikuulalla (peening) ja siloituspuhallus organiseillä rakeilla (smoothing). Orgaanisen rakeen puhaltamista voidaan käyttää myös ennen kompaktointia puhdistamaan kappaleen pinta. [14]

4.6 Abrasiivisen virtauksen menetelmä (Abrasive flow method, AFM)

AFM-prosessissa käytetään käyttämään nestemää tai pastamaista virtausta, jossa on abrasiivisia partikkeleita. Varten ei tarvita suoria reitejä tai kontrolloituja säteitä, mutta pitää olla halkaisijalttaan ainakin 0.2 mm, jotta työstö toimii. On huomioida, että seon reikien prosessointia ei ole mahdollista. Menetelmä ei ole massasilmäyksenästa. Vasta jokainen kappale pitää työstää erikseen. Hylänä puolet on, että virtaava aine voidaan räätälöidä kunkin tulostusmateriaalin ja kappaleen käyttökohteen mu-
kaan, ja tällä menetelmällä on mahdollista saavuttaa hyvä pinta muutoin vaikeapääsyisissä kohteissa. Tyyppillinen pinnankarheuden parannus on Ra 8–16 µm:stä karheuteen Ra 3–4 µm, ja menetelmän avulla saavutettava paras pinnanlaatu on mainittu olevan n. Ra 0,05 µm. Prosessi on käytössä mm. lentokone-, avaruus- ja ajoneuvosektorilla. [28–32]

4.7 Magneettiabraasio (Magnetic Abrasive Finishing, MAF)

MAF on prosessi, joka käättää magneettikenttä kovien magneettisten abrasiivisten partikkeleen liikuttamiseen lieteympäristössä. Partikkeleilla voi olla metallinen ydin, joka reagoi magneettikentän tai partikkelit voivat olla kokonaan metallisia esimerkiksi irrallisia rautarakteja. MAF-prosessissa merkittäviä parametreja materiaalin poistamiseen ja lopputulokseen on kiillotusnopeus, abrasiivinen materiaali, raekoko, määrä ja abrasiivin valmistusprosessi. Menetelmää voidaan kutsua kontaktittomaksi kiillotukseksi, koska abrasiiviset partikkelit aiheuttavat vain hyvin vähän vahinkoa käsiteltävälle pinnalle. MAF-menetelmässä pursee avaruudessa tarvittava abrasiivi muodostavat harjamaisen työkalun ja sen liittyvä tai jääkäy hyvän lopputuloksen saamiseksi. Menetelmän etuna on, että irrallaan olevat, magneettikentän ohjaamat abrasiivit muodostavat harjamaisen työkalun, mutta laitteistojen tuotto oikea määrä abrasiivissä voimassa ja terän ja lasu- ja hooaukkosessa, koska menetelmän liittyvät voimat ja energiat ovat vähäiset. Magneettiabraasiointi voidaan käätää usean vaiheen prosessina ja esimerkiksi ruostumattoman teräskappaleen (AISI 304) pinnankarheus saatiin Ra 7–16 µm:stä pienenneen arvoon Ra 0.03 µm kahdessa tunnissa. Paras menetelmällä saavutettava pinnanlaatu on mainittu olevan n. Ra 0.01 µm. [33]

4.8 Massaviimeistely (mass finishing)

Kun useita kappaleita käsitellään astiassa samanaikaisesti, saattavat kappaleet vuorovaikuttaa myös keskenään. Kappaleiden välisissä kontakti valtaa vähentää kiinnittämällä kappaleet tai vähentämällä kappaleiden määrää suhteessa työstäävän väläaineeseen. Kappaleiden ja väläaineen suhde voi vaihdella tilavuudeltaan 1:15 ja 4:1 välillä. [34,35]

Esimerkkejä massaviimeistelyprosesseista ovat: rumpuhionta, tärhayhionta, keskipakoksirumpuhionta, keskipakokiekkohionta ja akselihionta. Perinteisessä rumpuhionnassa abrasiivi
saadaan liikkeelle rummun pyörämisliikkeellä. Tärhionnasssa rummussa on pyörämisliikkeen lisäksi tärinä, jonka ansiosta työstö on parempi ja tasalaatuisempi. Astian muoto voi poiketa tynnrymäisestä, mikä antaa suuremmat kineettiset energian abrasiiveille.

CBF:ssä käytettävät abrasiiviset raken ovat usein paljon pienempiä kuin rakenne rumpu- ja tärvprosesseissa. Pursueenpoisto voidaan tehdä kovilla, vain vähän hioivilla partickeleilla ja jatkohionta yksinkertaisesti vaihtamalla pienemmän nopeutteen. Keskipakoisrumpuprosessi saa aikaan tasalaatuisten, toistettavien tuloksien, hyvän pinnenlaadun (n. Ra 0,025–0,1 µm) ja tuottaa hyvän toleranssin myös hauralla kappaleilla. Keskipakoisrumpuprosessissa on mahdollista syntyyvän sileän pinnan lisäksi saada aikaan puristusjännityksiä kappaleen pintaan, jolloin väsymiselinikin kasvaa. CBF-prosessi ei ole halvin saatavilla olevista massaviimeistelymenetelmissä. Jos tärylaitteistolla saadaan tyydyttäviä tuloksia alle 1–2 h aikana, niin on mainittu olevan taloudellisessa mielessä kannattavampi prosessi. [35]

Massaviimeistelymenetelmien etuina on automaattisuus ja huokea hinta. Haittipuolena taas on terävien kulmien ja pienten yksityiskohtien pyörityminen ja helppo vahingoittuminen. [17]

4.9 Käsinhionta

AM-kappaleita voidaan käsitellä vaikutteista, jotka ovat myös hiomalla. Lasersintrattujen kappaleiden manuaalinen hionta on verrattavissa perinteisen työkappaleen hiontavaheen. Lasersintrattujen kappaleiden manuaalinen hionta on verrattavissa perinteisen työkappaleen hiontavaheen. Lasersintrattujen kappaleiden manuaalinen hionta on verrattavissa perinteisen työkappaleen hiontavaheen.
menetelmiin. Hiontaa ja kiillotusta käsin on käytetty perinteisesti prototyyppien valmistuksen yhteydessä. Abrasiivisella hionnalla on mahdollista saada aikaan hienoja pinta-kaapeja, ja siihen päästään perinteisesti prototyyppien valmistuksen yhteydessä. Abrasiivisella hionnalla on mahdollista saada aikaan hienolaatuisempaa pintaa kuin esimerkiksi hiekkapuhaltamalla. Perinteinen abrasiivinen hionta soveltuu hyvin, kun hioittaa puolesta useimmille tuotantoprosesseille, ja huomioitavaa on myös se, että menetelmällä saavutettava pinnalanointi riippuu tekijästä. [4,17,37]

Ennen manuaalista kiillotusta suositellaan kappaleen kuulapuhallusta. Hiontavaheessa ennen kuin siiryttäisään hionnalla käsin, tulee käsitellä suurempia osia ja hiotua ne aggressiivisesti. [14]

Jos kappale on tarkoitus infiltroida myöhemmin tai kappaleessa on tarkoitus käyttää materiaaleja, jotka ovat herkkiä öljyjämille, tulee hionnan ja kiillotuksen aikana välttää käyttämästä hioittajapasteja tai muita voiteluaineita. Öljyjämemo on helposti poistettavissa, mutta vain hienoja ja puhdistamattomia osia jäävät. Kappaleesta poistetaan viljekset osia, joiden pitkät osuudet pupuutuvat ja vähentää pinnanlaatu. Jos kappale on tarkoitus infiltroida myöhemmin tai kappaleessa on tarkoitus käyttää materiaaleja, jotka ovat herkkiä öljyjämille, tulee hionnan ja kiillotuksen aikana välttää käyttämästä hioittajapasteja. Vihreänä reaktionäristä on mahdollista saavuttaa pinnalanointi riippuu tekijästä. [4,17,37]

4.10 Kiillotus manuaalisesti

AM-kappaleita voidaan kiillottaa käyttäen abrasiivisia parikkeleita tai kiillotuslaitteita. Karkeita parikkeleita käytetään suurella nopeudella pinotamaan hakojen jälkeen puolesta useimmille tuotantoprosesseille, ja huomioitavaa on myös se, että menetelmällä saavutettava pinnalanointi riippuu tekijästä. [4,17,37]

Jos kappale on kuulapuhallettu ja hiottu ennen kiillotusta, pitää ensimmäisessä vaiheessa poistaa kilpikangasta hionnalla käsin, tulee hionnan ja kiillotuksen aikana välttää käyttämästä hiontanesteita tai muita voiteluaineita. Öljyjämemillä on helposti poistettavissa, mutta vain hienoja ja puhdistamattomia osia jäävät. Kappaleesta poistetaan viljekset osia, joiden pitkät osuudet pupuutuvat ja vähentää pinnanlaatu. Jos kappale on tarkoitus infiltroida myöhemmin tai kappaleessa on tarkoitus käyttää materiaaleja, jotka ovat herkkiä öljyjämille, tulee hionnan ja kiillotuksen aikana välttää käyttämästä hioittajapasteja. Vihreänä reaktionäristä on mahdollista saavuttaa pinnalanointi riippuu tekijästä. [4,17,37]

4.11 Jälkilaserointi

AM-kappaleen ominaisuuksia on mahdollista parantaa myös jälkilaseroinnin avulla. Laserkiillotuksen avulla on mahdollista parantaa pinnakanasteuta ja vähentää huokosuutta, mutta se myös se, että menetelmällä saavutettava pinnalanointi riippuu tekijästä. [4,17,37]

Jos kappale on kuulapuhallettu ja hiottu ennen kiillotusta, pitää ensimmäisessä vaiheessa poistaa kilpikangasta hionnalla käsin, tulee hionnan ja kiillotuksen aikana välttää käyttämästä hioittajapasteja tai muita voiteluaineita. Öljyjämemillä on helposti poistettavissa, mutta vain hienoja ja puhdistamattomia osia jäävät. Kappaleesta poistetaan viljekset osia, joiden pitkät osuudet pupuutuvat ja vähentää pinnanlaatu. Jos kappale on tarkoitus infiltroida myöhemmin tai kappaleessa on tarkoitus käyttää materiaaleja, jotka ovat herkkiä öljyjämille, tulee hionnan ja kiillotuksen aikana välttää käyttämästä hioittajapasteja. Vihreänä reaktionäristä on mahdollista saavuttaa pinnalanointi riippuu tekijästä. [4,17,37]

Laserkiillotuksen on mainittu parantavan AM-kappaleiden pinnankarheutta huomattavasti. Fokusoidun laserin kapea intensiteettialue saattaa asettaa haasteita karkean pinnan kiillotamiseen ja menetelmän käyttöä jouduttaan viedä aikaa. Prosessoinnissa yksittäiset jauhepartikkelit voivat poiketa laservalon ja häiritä prosessia. Tätä voidaan korjata tehtäessä useammalla laserpyhkyksyllä. Esimerkiksi viidellä kiillotuspyhkyksyllä ruostumattoman teräksen (AISI 316L) pinnankarheus on saatu pienennettyä 96 %:ia arvoon Ra 0,79 µm. Alkuperäinen pinnankarheus vaikuttaa merkittävästi saavutettavissa olevaan pinnankarheuteen. Laserkiillotuksen nopeus riippuu käytettävän laitteen laitteistosta. Laitteistot ovat kehitetty ja tuotantoon on ollut mahtavaa 0,3–6 cm²/min. [38,40]

Eräs kaupallinen laite, joka on kehitetty AM-kappaleiden jälkikäsittelyyn laserilla, on nimeltään Hyproline. Laite pystyy puhdistamaan ja työstämään samanaikaisesti jopa 100 kappaleita samassa sessiossa. Tällöin päivissä pystytään tuottamaan pinnankarheudeja yli 10000 kappaleet. Optimoiduilla parametreilla pinnankarheuden ilmenneminen on mahdollista 90 %. Laite soveltuu ruostumattoman kerroksen ja titaanin työstöön. Laite ei ole pelkästään jälkityöstöön vaan sitä voidaan käyttää muita卫浴 ulosottotekniikkoja kappaleiden jälkikäsittelyyn. [41]

4.12 Mikrotyöstöprosessi, micro-machining process MMP

4.13 Términen purseenpoisto, Thermal Energy Method TEM

Termisessä TEM-menetelmässä hyödynnetään metanaikaasun polttoa purseenpoistoon haitapseuren reaktiota. Työstettävä kappale sijoitetaan kammioon, johon johdetaan paineistettu polttettava kaasu. Kaasu syttytetään, jolloin lämpötila nousee räjähdyssäkäisesti hetkellisesti
(muutaman millisekunnin ajaksi) yli 3000 °C:een. Nopean lämpöaallon aikana pienet purseet ylittävät itsesyttymislämpötilan ja hapettuvat suuremman kappaleen säilyessä vahingoittumattomana. Menetelmän etuna on, että kaasut ympäröivät purseet riippumatta kappaleen geometriasta. Muita etuja on mm. alhainen prosessointikustannus, korkea tuotantovauhti ja toistettavat tulokset.

Termistä purseenpoistoa käytetään useilla teollisuudenalalla ja menetelmää hyödynnetään mm. myllytyksen ja tärinää hyödyntävien puheen poistolaitteiden siian, joissa haasteena on epäsäännölliset ja arvaamattomampi lopputulos. Menetelmää käytetään pinnalle muodostuviin pestutuneiden puheiden muodostama heikosti kiinnitettynä oksidikerroksen ja käytetään seuraavan lämpökäsittelyn, pinnoitusprosessin tai upotuspuhdistuksen aikana. [29,42]

4.14 Kemiallinen ja sähkökemiallinen kiillotus

Kemiallinen kiillotuksen lisäksi lasersinrattujen kappaleiden työstöön voidaan kiiltävän pinnan aikaansaamiseksi käyttää sähkökemiallistia kiillotusta. Sähkökemiallisessa kiillotuksessa prosessi poistaa kappaleesta uloimman kerroksen ja mahdollisesti pintakerroksen jäänneet epäpuhtaudet, jotka voivat aiheuttaa pinnanläpikuori, sähkökemiallisen kiillotuksen etuna on kyky prosessoida pieniä ja mekaanisesti hauraita osia. Menetelmässä työstetään kappaleet upotetaan liuokseen ja niihin johdetaan tasavirta. Tämä menetelmä vaatii kemikaalien ja identtisen katodin käyttämistä kiillotuksen onnistumiseksi. [28,38,44,45]

Sähkökemiallisella kiillotuksella on useita etuja verrattuna kemialliseen kiillotukseen. Kylpyjen kemia on usein yksinkertaisempaa ja aineet vähemmän myrkyllisiä. Sähkökemiallinen kiillotus voidaan usein myös tehdä matalaammassa lämpötilassa ja prosessointijät ovat lyhyempä. Menetelmä toimii kaikille lasersinrattuille materiaaleille ja sen avulla saadaan aikaan hyviä pintoja mm. lääkettien sovelluksissa. Huonona puolena kemiallisen kiillotuksen verrattuna voidaan monimutkaisempi ja mekaaninen kiillotus tapahtua. Tämä menetelmä vaatii kemikaalien ja identtisen katodin käyttämistä kiillotuksen onnistumiseksi. [17,24,28]

Sähkökemiallisella kiillotuksella on useita etuja verrattuna kemialliseen kiillotukseen. Kylpyjen kemia on usein yksinkertaisempaa ja aineet vähemmän myrkyllisiä. Sähkökemiallinen kiillotus voidaan usein myös tehdä matalaammassa lämpötilassa ja prosessointijät ovat lyhyempiä. Menetelmä toimii kaikille lasersinrattuille materiaaleille ja sen avulla saadaan aikaan hyviä pintoja mm. lääkettien sovelluksissa. Huonona puolena kemiallisen kiillotukseen verrattuna voidaan monimutkaisempia laitteistoja käyttää. [28,37,45,46]

Eräs menetelmä, joka hyödyntää sähkökemiallisen kiillotuksen ja mekaanisen kiillotuksen etuja on sähkökemiallinen harjaus (electrochemical brushing), jossa elektrolyytti- tai liuoska virtaa kuolleen ja poistaa useita pintoja. Tämä menetelmä voidaan käyttää myös kappaleiden kiillotukseen. Pistettävän puhdistajan, joka työtahtoja, toimiva elektrodi liikkuu pinnan laheisyydessä. Tällä menetelmällä pystytään parempien pinnanlaatuisten puheiden poistamiseen. Haltiapuolen voidaan lisäksi iskella ja polttaa pinnan aikaansaamiseksi. [47]
Toinen sähkökemiallisen kiillotuksen erityissovelluksista on elektrolyyttinen plasmakiillotus. Perinteiseen sähkökemialliseen kiillotuksen verrattuna siinä käytetään merkittävästi korkeampaa sähköpotentiaalia ja ympäristöystävällisempiä kemikaaleja, jotka eivät perustu vahvoihin happoihin vaan halpoini suolaliuoksiin. Menetelmää voidaan käyttää mm. ruostumattoman ja matalahilislien teräksen, kuparin sekä messinngin työstämiseen. [48,49]

4.15 Hybridilaitteet

AM-valmistukseen liittyvissä hybridilaitteissa yhdistyvät tyypillisesti perinteinen koneistus ja ainetta lisäävä valmistus. Hybridilaitte voi olla esimerkiksi perinteinen koneistuskeskus, johon on lisätty työkäytäntöä lisäävää valmistusta varten. CNC-koneet ovat yleensä tuttuja yrityksille ja uudet hybridilaitteet mahdollistavat kevyemman askeleen ainetta lisäävään valmistukseen. Tällöin kokonaisuus ei ole niin vieras kuin esim. jauhepetimenetelmän käyttöönotto suoraan tuotannon yhteyteen.

Hybridilaitteessa kappaleen koneistus tapahtuu samassa kammiossa kuin valmistus. Koneistus voidaan suorittaa esimerkiksi 20 kerroksen valmistuksen jälkeen. Tällöin mm. muotinvalmistuksessa hybridikoneen etuna on myös sisäpuolen vesijäähdytyskanaviston muotin tehokkuuden lisäämiseksi. Tällöin jo muotin suunnitteluvaiheessa voidaan tehdä mallin parannuksia, kun työstää ei tarvitse tehdä jälkikäteen. Lisäksi muotin valmistusaikaa saadaan lyhentää ja valmistuskustannuksia pienennettyä merkittävästi verrattuna perinteiseen muottovalmistukseen. [50]

Eroasia toinen laserpinnoitus-, suhiokusulatus- tai ruiskutustyypipisen hybridilaitteen huono puoli jauhepetimetönä kappaleen verrattuna on laadunvalmistukseen käytettävän testikappaleen valmistumisen aiheuttama lisätyö. Testikappaleen valmistaminen oikea kappaleen lisäksi vaatii koneelta enemmän liikerataja ja käyttää erityisesti aikaa. Jauhepetimetönä kappaleen levitetään jauhekehyskoko on vielä toistaiseksi suhteellisen pieni. Mahdollisena haluttuun materiaaliin on myös mitätöintä, jota voidaan tehdä laserkoneella ja vähentää mahdollisuutta erityiskohtia käyttäen. Tämä voidaan kuitenkin kompensoida hybridilaitteen ainetta poistavalla mahdollisuuudella, jolloin on mahdollista optimoida valmistustehokkuutta ja -tarkkuutta. [50]

Jauhepetiteknikkaa käyttävää hybridilaitteesta esimerkkinä on Matsuurin valmistama LUMEX Avance-25, joka yhdistää jauhepetiteknikan lasersintraukseella CNC-koneistukseen. Laitteessa on mahdollista vaihtaa koneistusteräjä valmistusprosessin aikana. [50]

Muita hybridilaitteita on mm. Mazak INTEGREX i-400AM, jossa kuitulaser sulattaa metallijauheen, DMG Morin Lasertec 4300 3D ja Lasertec 85 3D, IBARMIA Add&Process sekä
Hermlen MPA 40. Myös koneistuslaitevalmistaja Hurco on ollut kiinnostunut hybriditeknikasta ja on vuonna 2014 hakenut patenttia hybridilaitetekniikkaan liittyen, mutta hybridilaitteistoa ei heiltä ole vielä saatavilla. [55-61]

Kuva 4. Ainetta lisäävä työkalu koneistuslaitteessa. [62]

Täysin toisenlainen lähestymistapa hybridivalmistukseen liittyen on aiemminkin mainittu Hydroline-laite, jossa 3D-valmistus ja työstö laserrilla tehdään ikään kuin tuotantomaisesti liukuhihnailla. Laitteisto tai tuotantolinja mahdollistaa 100 erillisen, erilaisen kappaleen valmistamisen linjan liikkuessa 1–2 m/s. AM-tulostus, pintakäsittely laserilla ja kappaleiden poisto tulostusalustalta tapahtuvat automaattisesti. Laitteistossa saadaan myös verrattua tulostettua kappalaetta CAD-malliin ja laadunvarmistus tehtyä jo prosessin aikana. Linja voidaan koostaa moduuleista kuhunkin tuotantoprosessiin sopivaksi. Valmistetun kappaleen pinnankarheuden on sanottu olevan niinkin hieno kuin 0,5 µm. [41,63,64]

4.16 Robotisointi

Robotisointia voidaan ainetta lisäävällä valmistuksessa käyttää mm. kappaleen poistamiin AM-laitteesta. Tällä hetkellä suuri osa lasertulostuslaitteistoista on kuitenkin sellaisia, että kappale poistetaan tuotantomäärin käsin. AM-valmistusta on mahdollista automatisoida enemmän tulevaisuudessa, jolloin robotti voi poistaa tulostusalustan laitteesta ja suorittaa jälkikäsittelyt esim. erillisessä asemassa automaattisesti. Myös lopputarkastus on mahdollista automatisoida.

Eräs automaattisuuteen tähtäävä laitteisto on Additive Industries:n MetalFAB1, jossa on jauhepoistuneet viimeisinä lampökiiltymäkäisissä. Lisäksi saataville on tulos saattaa kappaleen poistamiseen ja jälkikäsittelyyn soveltuvia moduuleita. Moduuleita voidaan lisätä tarpeiden mukaan. Tulostusalustat käsitellään automaattisesti. Lisäksi laitteeseen on mahdollista lisätä myös toinen jauhepoistuneet viimeisinä lampökiiltymäkäissä, jossa voidaan käyttää toista jauhemateriaalia ja välityttävän happeiden ja jauhelinjojen puhdistuskelta tai kontaminaatio riskiltä. Laite on vuoden 2016 alkupuolella vielä beta-testausvaiheessa. [65]

Myös muut laitevalmistajat ovat kehitteineet prosessin automatisointia, jolloin kappaleiden valmistus tuotantomittakaavassa olisi kustannustehokkaampaa. Esimerkkinä tällaisista laitteistoista ovat mm. EOS M400 ja SLM 500, jolloin on saatavissa jauhekiiltymäkäisesti valmistettua tuotostumkemioa. [16,66]

Toistaiseksi AM-laitteivalmistajat ovat keskittyneet tyypillisten valmistustensa seuraavien vaiheiden automatisointiin kuten jauhepoistoon ja jauhekiiltymän yhteydessäkin mainitun irrotettavan tuotostumkemion. [16,66]
miita ratkaisuja tähän ei vielä ole. Erillisiä ratkaisuja kuitenkin löytyy ja esim. kuulapuhallus-robbottiratkaisuja valmistaa mm. Blastman [67]

Robotiikan ylipäättään uskotaan tuotantoptyyppistöissä. Sen avulla voitaisiin käyttää hyödyksi mm. suurten, teolliseen tuotantoon valmistettujen kappaleiden siirtelyssä, missä kappaleet painavat useita satoja kiloja. Juoksa- ja pyöräilyperäisen robotiikan avulla myös työstöpintojen ja -ratojen opettaminen robotille helpottuu, mikä mahdollistaa ketterämmän pienarjautuotannon. [68]

4.17 HIP-käsittely (isostaattinen kuumapuristus)

Isostaattista kuumapuristusta (HIP, hot isostatic pressing) voidaan käyttää lasersintraamalla, sulamenetelmällä, valamalla tai jauhemetallurgisesti valmistettujen kappaleiden huokoisuuden vähentämiseen. Tiheämällä materiaalilla mm. väsymiskestävyys ja sitkeyt ovat paarempia. AM-kappaleen HIP-käsittely poistaa materiaalista huokoset riippumatta niiden määrästä tulostusmenetelmässä, missä kappaleet painavat useita satoja kiloja. Juoksa- ja pyöräilyperäisen robotiikan avulla myös työstöpintojen ja -ratojen opettaminen robotille helpottuu, mikä mahdollistaa ketterämmän pienarjautuotannon. [10,12,69,70]

4.18 Peittaus

4.19 Infiltrointi

Infiltrointi on tärkeää, kun valmistetaan metallisia kappaleita sideaineruiskutusmenetelmällä. Infiltroinnin avulla saadaan pienennettyä kappaleen huokoisuutta vaikuttamatta kappaleen mittatarkkuuteen. Menetelmissä infiltrointi tehdään uunissa missä infiltroitu aine virtaa kapilla- tai ilmiön avulla valmistetun kappaleen huokoisiin osiin. Infiltrointia voidaan käyttää myös ei-metallisissa kappaleissa parantamaan tiivyyttä, tekemään ohutseinäisistä lasersintraatuisista ja FDM-tulostetuista kappaleista veden- ja kaasunläpäisemättömiä tai käyttää kappaleiden värijäykseen. Jos kappale on tarkoitus infiltroidut, pitää ottaa huomioon, että aiemmmissa työstövaiheissa ei käytetä aineita (öljy yms.), jotka voivat tunkeutua huokoisiin jääden sinne ja estää onnistuneen infiltroinnin. [4,12,14]
4.20 Plasmakäsittely

Muovien matalan pintaenergian takia niitä on vaikea liittää ja pinnoittaa. Ratkaisuna tähän voidaan muovit plasmakäsitellä. Plasmakäsittelyä käytetään tyypillisesti muoville ennen liimaamista, maalaamista tai pinnoitusta parantamaan adheesiota ja kostutusta. Plasmakäsittelyä voidaan käyttää myös metalleille ja liittämisen edesauttamisen lisäksi käsitteilyllä voidaan poistaa orgaaniset epäpuhtaudet pinnoilla. Plasmakäsittelyteknikka on mahdollista integroida tuotantolinjaan helposti ja kustannustehokkaasti. Tantec on erikoistunut 3D-tulostettujen kappaleiden plasma- ja koronakäsittelyyn. [73]

4.21 Pinnoitus / maalaus

kosten tai sisäpuolisiin muotoihin jääneen jauheen havaitsemiseen. Kappaleen paksuus ja muodot voivat kuitenkin vaikeuttaa vikojen havaitsemista. Monimutkaisille kappaleille lupaa-vimman teknikän on mainittu olevan röntgentomografia. [4,8,9,75]

6. Yhteenveto

Lähdeviitteet

14. EOS. Application Notes - Surface Finishing of DMLS Parts.

16. Ritt SSSG. Update on latest developments in SLM 500-Technology, the fastest production machine so far. [Online]; 2014 [viitattu 2016 3 7]. Saatavilla: https://www.youtube.com/watch?feature=player_embedded&v=OnhJ5h7dpKc.

17. EOS. Basic Training chapter 12 - Post-processing of DMLS parts.

46. Teixeira AF. Development of an Electropolishing Method for Titanium Materials. 2011. The Department of Mechanical and Industrial Engineering, Concordia University Montreal, Quebec, Canada.

Liitteet
