Biotekninen vaihtoehto haluamanne kemikaalin tai proteiinin tuottoon

Erityisosaamistamme on hiiva-, bakteeri-, home-, levä- ja kasvisoluja proteiinien, entsyymien, biopolttoaineiden, biomateriaalien ja kemikaalien kehittäminen tuottajiksi. Synteettisen ja systeemibiologian, automaation ja tuottofysiologian osaamisemme avulla muutamme biotekniset tuottoprosessit kannattaviksi ja kestävän kehityksen mukaisiksi. Tarjoamme ainutlaatuisen laitteiston bioprosessien optimoimiseksi fermentorikasvatuksin laboratoriomittakaavasta aina pilot-mittakaavaan asti.

Solutehdas-konsepti tarjoaa kiinnostavan, bioteknisen vaihtoehdon haluamanne kemikaalin tai proteiinin tuottoon.

Teollinen biotekniikka näyttää uuden suunnan tulevaisuuden tuotteisiin ja prosesseihin

Nyt on aika siirtyä fossiilisista raaka-aineista kohti uusiutuvia luonnonvaroja – ei ainoastaan hyödyntämään biomassan sivuvirtoja vaan myös yksinkertaisia hiilivetyjä, metanolia tai hiilidioksidia. Luonto tarjoaa loputtomat mahdollisuudet hyödyntää ja muunnella luonnon raaka-aineita uusiksi hyödyllisiksi tuotteiksi. 

Lähde kanssamme mukaan biotekniikan innostavaan maailmaan kohti kestävän kehityksen mukaista tulevaisuuden biotaloutta!


Partners: VTT Technical Research Centre of Finland, Aalto University, University of Turku

Coordinator: Research Professor Merja Penttilä, VTT

Tekes funding: € 3 955 000 (2014 - 2016)

The goal of Living Factories programme is to realise the full potential of Synthetic Biology in Finland. Synthetic Biology is considered one of the key breakthrough technologies that will have a major impact on our future. It is based on the design and engineering of new-to-nature biological systems. It has a great potential to generate novel industrial processes and products.

In Living Factories programme, we will create an academia-education-industry environment that builds on forward-looking know-how and exploits the unique functionalities that biology - combined with engineering sciences - can offer, and which will be highly competitive internationally. This will serve as an inspiration for novel and visionary solutions for a sustainable biobased society.

The key focus of the programme is to develop Synthetic Biology solutions that enable industrial processes that are energy and carbon efficient.


Contact us

Merja Penttilä

Programme coordinator, Research Professor

Anu Koivula

Project Manager, Principal Investigator


Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Andberg, M., Penttilä, M. and Saloheimo, M., Bioresource Technol. 2015, 181:105-113.

Protein body formation in leaves of Nicotiana benthamiana: a concentration-dependent mechanism influenced by the presence of fusion tags. Saberianfar, R., Joensuu, J.J., Conley, A. and Menassa, R. Plant Biotechnol. J. 2015, in press.


Cloning and characterisation of a novel acidic cutinase from Sirococcus conigenus. Nyyssölä, A., Pihlajaniemi, V., Häkkinen, M., Kontkanen, H., Saloheimo, M. and Nakari-Setälä, T. Appl. Microbiol. Biotechnol. 2014, 98: 3639-3650.

Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Häkkinen, M., Valkonen, M., Westerholm-Parvinen, A., Aro, N., Arvas, M., Vitikainen, M., Penttilä, M., Saloheimo M. and Pakula, T.. Biotechnology for Biofuels 2015, 7:14.

Comparison of intracellular and secretion-based strategies for production of human α-galactosidase A in the filamentous fungus Trichoderma reesei. Smith, W., Jäntti, J., Oja, M. and Saloheimo, M. BMC Biotechnol. 2014, 14: 91.

Intracellular pH responses in the industrially important fungus Trichoderma reesei. Valkonen, M., Penttilä, M. and Bencina, M.. Fung. Genet. Biol. 2014, 70: 83-90.
Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells. Reuter, L., Bailey, M., Joensuu, J., Ritala, A.. Plant Biotechnol. J. 2014, 12: 402-410.

Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants. Phan, H., Hause, B., Hause, G., Arcalis, E., Stoger, E., Maresch, D., Altmann, F., Joensuu, J., and Conrad, U. PLoS ONE 2014, 9:e99347.

Plant-based solutions for veterinary immunotherapeutics and prophylactics. Kolotilin, I., Topp, E., Cox, E., Devriendt, B., Conrad, U., Joensuu, J., Stäger, E., Warzecha, H.,McAllister, T., Potter, A., McLean, M., Hall, C. and Menassa, R..Veterinary Research 2014, 45:117.

Protein production – ER quality control and secretion stress responses in Trichoderma reesei. Saloheimo, M., Pakula, T., Aro, N. and Joensuu, J.. In: Gupta, V.J. et al. (Eds.) Biology and Biotechnology of Trichoderma. Elsevier 2014, Waltham, MA, USA.


Directing enzymatic cross-linking activity to the air-water interface by a fusion protein approach. Paananen, A., Ercili-Cura, D., Saloheimo, M., Lantto, R. and Linder, M..
Soft matter 2013, 9: 1612.

Intracellular protein production in Trichoderma reesei (Hypocrea jecorina) with hydrophobin fusion technology. Mustalahti, E., Saloheimo, M. and Joensuu, J.. New Biotechnol. 2013, 30: 262-268.

Sturucture-function relationships in hydrophobins: probing the role of charged side chains. Lienemann M, Gandier J.-A., Joensuu J.J., Iwanaga A., Takatsuji Y., Haruyama T., Master E., Tenkanen M. and Linder M.B.. Applied and Environmental Microbiology 2013, 79:5533-5538.

Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Corchero, J., Gasser, B., Resina, D. Smith, W., Parrilli, E., Vázquez, F., Abasolo, I., Giuliani, M., Jäntti, J., Ferrer, P., Saloheimo, M., Mattanovich, D., Schwartz, S., Tutino, L. and Villaverde, A.. Biotechnology Advances 2013, 31: 140-153.

Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase. Faccio, G., Arvas, M., Thöny-Meyer, L. and Saloheimo, M.. J. Inorg. Biochem. 2013, 121: 37–45.

Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of biomass. Gourlay, K., Hu, J., Arantes, V., Andberg, M., Saloheimo, M., Penttilä, M. and Saddler, J.. Bioresource Technol. 2013, 142: 498-503.


The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Saloheimo, M. and Pakula, T.M.. Microbiology 2012, 158: 46 – 57.

Bacterial tyrosinases and their applications. Faccio, G., Kruus, K., Saloheimo, M. and Thöny-Meyer, L.. Process Biochemistry 2012, 47: 1749 - 1760.

Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Häkkinen, M., Arvas, M., Oja, M., Aro, N., Penttilä, M., Saloheimo M. and Pakula, T.M.. Microbial Cell Factories 2012, 11:134.

Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. Biely, P., Tenkanen, M., Vršanská, M., Puchart, V., Wong, Penttilä, M., Saloheimo, M. and Siika-aho, M.. FEBS J. 2012, 280: 285-301.

Bioseparation of recombinant proteins from plant extract with hydrophobin fusion technology. Joensuu, J.J., Conley, A., Linder, M. and Menassa, R.. In: Methods in Molecular Biology. Volume 824: Recombinant Gene Expression: Reviews and Protocols. 3rd ed. Springer 2012, 527-534. 

Transient expression using agroinfiltration and its applications in molecular farming. Menassa, R., Ahmad, A. and Joensuu, J.J.. In: Molecular Farming in Plants: Recent Advances and Future Prospects. Wang, A. & Ma, S. (eds). Springer2012, 183-198.


Correlation of gene expression and protein production rate - a system wide study. Arvas M., Pakula T., Smit B., Rautio J., Koivistoinen H., Jouhten P., Lindfors E., Wiebe M., Penttilä M., Saloheimo M.. BMC Genomics. 2011, 12:616.

Sulfhydryl oxidases: sources, properties, production and applications. Faccio G., Nivala O., Kruus K, Buchert J., Saloheimo M.. Appl. Microbiol. Biotechnol. 2011, 91:957-966.

The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Limón M.C., Pakula T., Saloheimo M., Penttilä M..
Microb. Cell Fact. 2011 10:40.

Production and characterisation of AoSOX2 from Aspergillus oryzae, a novel flavin-dependent sulfhydryl oxidase with good pH and temperature stability. Faccio G., Kruus K., Buchert J., Saloheimo M.. Appl. Microbiol. Biotechnol. 2011, 90:941-949.

Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Dragosits M., Frascotti G., Bernard-Granger L., Vázquez F., Giuliani M., Baumann K., Rodríguez-Carmona E., Tokkanen J., Parrilli E., Wiebe M.G., Kunert R., Maurer M., Gasser B., Sauer M., Branduardi P., Pakula T., Saloheimo M., Penttilä M., Ferrer P., Luisa Tutino M., Villaverde A., Porro D., Mattanovich D.. Biotechnol. Prog. 2011, 27:38-46.

Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Steiger M.G., Vitikainen M., Uskonen P., Brunner K., Adam G., Pakula T., Penttilä M., Saloheimo M., Mach R.L., Mach-Aigner A.R.. Appl. Environ. Microbiol. 2011, 77:114-21.

Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Conley A.J., Joensuu J.J., Richman A., Menassa R.. Plant Biotechnol. J. 2011, 9:419-433.


Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. Levasseur A., Saloheimo M., Navarro D., Andberg M., Pontarotti P., Kruus K., Record E.. BMC Biochem. 2010, 11:32.

Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae. Faccio G., Kruus K., Buchert J., Saloheimo M..
BMC Biochem. 2010, 11:31.

Detecting novel genes with sparse arrays. Arvas M., Haiminen N., Smit B., Rautio J., Vitikainen M., Wiebe M., Martinez D., Chee C., Kunkel J., Sanchez C., Nelson M.A., Pakula T., Saloheimo M., Penttilä M., Kivioja T. Gene. 2010, 467:41-51.

Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. Vitikainen M., Arvas M., Pakula T., Oja M., Penttilä M., Saloheimo M.. BMC Genomics. 2010, 11:441.

Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase. Gasparetti C., Faccio G., Arvas M., Buchert J., Saloheimo M., Kruus K.. Appl. Microbiol. Biotechnol. 2010, 86:213-26.

Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Joensuu J.J., Conley A.J., Lienemann M., Brandle J.E., Linder M.B., Menassa R..
Plant Physiol. 2010, 52:622-633.

Tilaa englanninkielinen Living Factories Newsletter

Living Factories sends one newsletter per year describing the results so far. We also send invitations to different public seminars around the subject of Synthetic Biology.

Synthetic Biology And Its Societal Implications Seminar 2.9.2015

Synthetic Biology And Its Societal Implications Seminar 2.9.2015
@ the Aalto University (Chydenia-building, Runeberginkatu 22-24) in Helsinki